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Fig. 1. We propose a method for fast forward and inverse ray tracing of particle-based scene representations such as Gaussians. The main idea is to construct
encapsulating primitives around each particle, and insert them into a BVH to be rendered by a ray tracer specially adapted to the high density of overlapping
particles. Efficient ray tracing opens the door to many advanced techniques, including secondary ray effects like mirrors, refractions and shadows, as well as
highly-distorted cameras with rolling shutter effects and even stochastic sampling of rays. Project page: GaussianTracer.github.io

Particle-based representations of radiance fields such as 3D Gaussian Splat-

ting have found great success for reconstructing and re-rendering of complex

scenes. Most existing methods render particles via rasterization, projecting

them to screen space tiles for processing in a sorted order. This work instead

considers ray tracing the particles, building a bounding volume hierarchy

and casting a ray for each pixel using high-performance GPU ray tracing

hardware. To efficiently handle large numbers of semi-transparent particles,

we describe a specialized rendering algorithm which encapsulates parti-

cles with bounding meshes to leverage fast ray-triangle intersections, and

shades batches of intersections in depth-order. The benefits of ray tracing
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are well-known in computer graphics: processing incoherent rays for sec-

ondary lighting effects such as shadows and reflections, rendering from

highly-distorted cameras common in robotics, stochastically sampling rays,

and more. With our renderer, this flexibility comes at little cost compared to

rasterization. Experiments demonstrate the speed and accuracy of our ap-

proach, as well as several applications in computer graphics and vision. We

further propose related improvements to the basic Gaussian representation,

including a simple use of generalized kernel functions which significantly

reduces particle hit counts.

CCS Concepts: • Computing methodologies→ Rendering; Reconstruc-
tion.

Additional Key Words and Phrases: Radiance Fields, Gaussian Splats, Ray

Tracing
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1 INTRODUCTION
Multiview 3D reconstruction and novel-view synthesis are a classic

challenge in visual computing, key to applications across robotics,

telepresence, AR/VR, and beyond. Many approaches have been

proposed, but most recently particle-based representations have

shown incredible success, ignited by 3D Gaussian Splatting [Kerbl

et al. 2023] (3DGS)—the basic idea is to represent a scene as a large

unstructured collection of fuzzy particles which can be differentiably

rendered by splatting to a camera view with a tile-based rasterizer.

The location, shape, and appearance of the particles are optimized

using a re-rendering loss.

Meanwhile, more broadly in computer graphics, rendering has

long been a duality between rasterization and ray tracing. Tradition-

ally, rasterization supported real-time performance at the expense

of approximating image formation, while ray tracing enabled fully

general high-fidelity rendering in the expensive offline setting. How-

ever, the introduction of specialized GPU ray tracing hardware and

real-time renderers has moved ray tracing into the realm of real-time

performance.

This work is motivated by the observation that 3DGS is limited

by the classic tradeoffs of rasterization. The tile-based rasterizer is

ill-suited to rendering from highly-distorted cameras with rolling

shutter effects, which are important in robotics and simulation. It

also cannot efficiently simulate secondary rays needed to handle

phenomena like reflection, refraction, and shadows. Likewise, ras-

terization cannot sample rays stochastically, a common practice for

training in computer vision. Indeed, prior work has already encoun-

tered the need for these capabilities, but was limited to rendering

with restrictive tricks or workarounds [Niemeyer et al. 2024; Seiskari

et al. 2024]. We instead aim to address these limitations by making

the ray traced Gaussian particles efficient, with a tailored imple-

mentation for specialized GPU ray tracing. To be clear, goal of this

work is not to offer an end-to-end solution to unsolved problems

like global illumination or inverse lighting on particle scenes, but

rather to provide a key algorithmic ingredient to future research on

these problems: a fast differentiable ray tracer.

Efficiently ray tracing Gaussian scenes (and more generally semi-

transparent surfaces) is not a solved problem [“Tanki” Zhang 2021].

We find that even past algorithms that were specially designed for

ray tracing semi-transparent particles [Brüll and Grosch 2020; Knoll

et al. 2019; Münstermann et al. 2018] are ineffective on these scene

reconstructions, due to the huge numbers of non-uniformly dis-

tributed and densely-overlapping particles. Accordingly, we design

a customized GPU-accelerated ray tracer for Gaussian particles with

a 𝑘-buffer [Bavoil et al. 2007] hits-based marching to gather ordered

intersections, bounding mesh proxies to leverage fast ray-triangle

intersections, and a backward pass to enable optimization. Each

of these components is carefully tested for speed and quality on a

variety of benchmarks. We found it crucial to tune the details of

the algorithm to the task at hand. Our final proposed algorithm

is almost 25x faster than our first naive implementation, due to a

wide range of algorithmic and numerical factors. We hope that these

learnings will be of value to the community leveraging raytracing

on particle representations.

The fundamental approach of representing a scene with parti-

cles is not limited to the Gaussian kernel; and recent work has

already shown several natural generalizations [Huang et al. 2024].

Our ray tracing scheme, as well as the benefits and applications

above, likewise generalizes more broadly to particle-based scene

representations, as we show in section Section 4.5.

We evaluate this approach on a wide variety of benchmarks and

applications. On standard multiview benchmarks, ray tracing nearly

matches or exceeds the quality of the 3DGS rasterizer of Kerbl et al.

[2023], while still achieving real-time rendering framerates. More

importantly, we demonstrate a variety of new techniques made

easy and efficient by ray tracing, including secondary ray effects

like shadows and reflections, rendering from cameras with high

distortion and rolling shutter, training with stochastically sampled

rays and more.

In summary, the contributions of this work are:

• A GPU-accelerated ray tracing algorithm for semi-transparent

particles.

• An improved optimization pipeline for ray-traced, particle-

based radiance fields.

• Generalized Gaussian particle formulations that reduce the

number of intersections and lead to improved rendering effi-

ciency.

• Applications demonstrating the utility of ray tracing, includ-

ing: depth of field, shadows, mirrors, highly-distorted cameras,

rolling shutter, incoherent rays, and instancing.

2 RELATED WORK

2.1 Novel-View Synthesis and Neural Radiance Fields
Classical approaches to novel-view synthesis can be roughly cat-

egorized based on the sparsity of the input views. In the case of

sparse views, most methods first construct a proxy geometry us-

ing multi-view stereo [Schönberger and Frahm 2016; Schönberger

et al. 2016] and point cloud reconstruction methods [Kazhdan et al.

2006; Kazhdan and Hoppe 2013] and then unproject the images

onto this geometry either directly in terms of RGB colors [Buehler

et al. 2001; Debevec et al. 1996; Wood et al. 2000] or extracted la-

tent features [Riegler and Koltun 2020, 2021]. The novel views are

rendered by projecting the color or features from the geometry to

the camera plane. In the case of densely sampled input views, the

novel-view synthesis can instead be formulated directly as light

field interpolation problem [Davis et al. 2012; Gortler et al. 1996;

Levoy and Hanrahan 1996].

Neural Radiance Fields (NeRFs) [Mildenhall et al. 2020] have

revolutionized the field of novel-view synthesis by representing

the scenes in terms of a volumetric radiance field encoded in a

coordinate-based neural network. This network can be queried at

any location to return the volumetric density and view-dependent

color. The photo-realistic quality of NeRFs has made them the stan-

dard representation for novel-view synthesis. Follow-up works have

focused on improving the speed [Müller et al. 2022; Reiser et al.

2021], quality [Barron et al. 2021, 2022, 2023], and surface represen-

tation [Li et al. 2023; Wang et al. 2021, 2023a; Yariv et al. 2021]. NeRF

has also been extended to large-scale scenes [Li et al. 2024a; Turki
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Fig. 2. Runtime Ray Tracing Effects: Our ray-based pipeline is easily compatible with conventional ray-based visual effects at test time, including reflections
(top left), depth of field (top middle), refractions (bottom left), hard shadows cast by meshes (bottom middle), and myriad combinations of them (right).

et al. 2022], sparse inputs views [Niemeyer et al. 2022], in-the-wild

image collections [Martin-Brualla et al. 2021], and reflections [Guo

et al. 2022]. Finally, several works investigated ways to speed up

the inference by baking the neural fields to more performant rep-

resentations [Duckworth et al. 2023; Reiser et al. 2024, 2023; Wang

et al. 2023b]. While achieving high quality and fast rendering speeds,

these methods often employ compute-expensive multi-stage train-

ing procedures.

2.2 Point-Based and Particle Rasterization
Grossman and Dally [1998] defined point-based rendering as a sim-

ple rasterization of object surface points along with their color and

normals. However, due to the infinitesimal size of the points, such

simple rasterization inevitably led to holes and aliasing. To address

these limitations, later work converted points to particles with a

spatial extent, such as surfels, circular discs, or ellipsoids [Pfister

et al. 2000; Ren et al. 2002; Zwicker et al. 2001]. More recently, points

or particles have also been augmented with neural features and ren-

dered using rasterization in combination with CNN networks [Aliev

et al. 2020; Kopanas et al. 2021; Rückert et al. 2022] or NeRF-like

volumetric rendering [Ost et al. 2022; Xu et al. 2022].

Differentiable rendering through alpha blending was also ex-

tended to volumetric particles. Pulsar [Lassner and Zollhöfer 2021]

proposed an efficient sphere-based differentiable rasterization ap-

proach, which allows for real-time optimization of scenes with

millions of particles. The seminal 3DGS work of Kerbl et al. [2023]

instead represented the scenes using fuzzy, anisotropic 3D Gaussian

particles. By optimizing the shape, position, and appearance of these

Gaussian particles through an efficient tile-based rasterizer, 3DGS

achieves SoTA results in terms of perceptual quality and efficiency.

3DGS inspired many follow-up works that aim to reduce the render

time or memory footprint [Fan et al. 2023; Niedermayr et al. 2023;

Papantonakis et al. 2024], improve surface representation [Gué-

don and Lepetit 2023; Huang et al. 2024], and support large-scale

scenes [Kerbl et al. 2024; Ren et al. 2024], and more.

Jointly, these works have made significant progress, but they still

inherit limitations of rasterization. Indeed, they are not able to rep-

resent highly distorted cameras, model secondary lighting effects,

or simulate sensor properties such as rolling shutter or motion blur.

Several works have tried to work around these limitations. Niemeyer

et al. [2024] first train a Zip-NeRF [Barron et al. 2023] that can model

distorted and rolling shutter cameras and then render perfect pin-

hole cameras from the neural field and distill them into a 3DGS

representation. This allows for fast inference, but is still limited

to perfect pinhole cameras. To address secondary lighting effects,

recent works bake occlusion information into spherical harmonics

at each Gaussian [Gao et al. 2023; Liang et al. 2023] or leverage

shading models and environment maps [Jiang et al. 2024]. The latter

two of these render only with rasterization; in contrast Gao et al.

[2023] traces rays for initial visibility determination, but uses only a

visibilty forward pass, and restricts ray tracing to the training phase,

relying on rasterization during inference and inheriting its limita-

tions. In contrast, our method uses optimized ray-tracing as the

sole renderer throughout both training and inference, which allows

for inserting objects, refraction, lens distortion, and other complex

effects. Additionally, Gao et al. [2023] use axis-aligned bounding

boxes (AABBs) to enclose particles, which results in approximately

3× lower FPS during inference compared to the stretched icosahe-

drons employed in our optimized tracer (Section 5.2). Finally, for

complex lens effects, Seiskari et al. [2024] model the motion blur and

rolling shutter of the camera by approximating them in screen space

through rasterization with pixel velocities. Unlike these works, we

formulate a principled method for efficient ray tracing of volumetric

particles, which natively alleviates all the limitations mentioned

above and further allows us to simulate effects such as depth of field

and perfect mirrors.

2.3 Differentiable Ray Tracing of Volumetric Particles
Ray tracing became the gold standard for offline rendering of high-

quality photo-realistic images [Whitted 1979]. The advent of dedi-

cated hardware to efficiently compute the intersection of camera
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rays with the scene geometry has also enabled its use for real-time

rendering applications such as gaming and the simulation industry.

Modern GPUs are exposing ray tracing rendering pipelines, from

the computation of dedicated acceleration structures to a specific

programmable interface [Joshi et al. 2007].

However, these works are highly optimized for rendering opaque

surfaces and efficiently handling order independent semi-transparent

surfaces or particles remains challenging [“Tanki” Zhang 2021].

A first class of works [Aizenshtein et al. 2022; Münstermann et al.

2018] proposes to first estimate the transmittance function along

the ray and subsequently to integrate the particles’ radiance based

on this estimate. It assumes the traversal of the full scene to be fast

enough; an assumption that does not hold in Gaussian particles for

scene reconstruction.

A second class of works consists in re-ordering the particles along

the ray. Knoll et al. [2019] propose a slab-tracing method to trace

semi-transparent volumetric RBF (radial basis function) particles,

which enables real-time ray tracing of scenes consisting of several

millions of such particles. However, its efficiency is largely based

on the assumption of the isotropic shape of the particles and a high

level of uniformity in their spatial distribution. In [Brüll and Grosch

2020], the multi-layer alpha blending approach from [Salvi and

Vaidyanathan 2014] is extended to ray tracing. Their multi-layer

alpha tracing supports efficient rendering of any semi-transparent

surface but its approximation of the particle’s ordering may produce

rendering artifacts.

Our formulation takes root in these precursory works. However

as opposed to [Knoll et al. 2019], it is guaranteed to process every

particle intersecting the ray, and contrary to [Brüll and Grosch 2020]

the hit processing order is consistent, which ensures the differentia-

bility of our tracing algorithm.

Compared to rasterization, differentiable ray tracing of semi-

transparent particles has seen much less progress in recent years.

Perhaps the most similar rendering formulation to ours was pro-

posed in Fuzzy Metaballs [Keselman and Hebert 2022, 2023], but it

is limited to scenes with a small set of 3D Gaussian particles (several

tens) and images with very low resolution. Different to Fuzzy Meta-

balls, our method can easily handle scenes with several millions

of particles from which it can render full HD images in real-time.

In another direction, Belcour et al. [2013] incorporate defocus and

motion blur in to ray tracers by leveraging Gaussian approximations

as a sampling technique, rather than a scene representation as used

here.

3 BACKGROUND
We begin with a short review of 3D Gaussian scene representation,

volumetric particle rendering, and hardware-accelerated ray tracing.

3.1 3D Gaussian Parameterization
Extending Kerbl et al. [2023], our scenes can be represented as a set

of differentiable semi-transparent particles defined by their kernel

function. For example, the kernel function of a 3D Gaussian particle

𝜌 : R3 → R at a given point 𝒙 ∈ R3
can be expressed as

𝜌 (𝒙) = 𝑒−(𝒙−𝝁 )
𝑇
𝚺
−1 (𝒙−𝝁 ) , (1)

where 𝝁 ∈ R3
represents the particle’s position and 𝚺 ∈ R3×3

the

covariance matrix. To ensure the positive semi-definiteness of the

covariance matrix 𝚺 when optimizing it using gradient descent, we

represent it as

𝚺 = 𝑹𝑺𝑺𝑇 𝑹𝑇 (2)

with 𝑹 ∈ SO(3) a rotation matrix and 𝑺 ∈ R3×3
a scaling matrix.

These are both stored as their equivalent vector representations,

a quaternion 𝒒 ∈ R4
for the rotation and a vector 𝒔 ∈ R3

for the

scale. For other particle variants explored in this work, please refer

to Section 4.5.

Each particle is further associated with an opacity coefficient

𝜎 ∈ R, and a parametric radiance function 𝜙𝜷 (𝒅) : R3 → R3
,

dependent on the view direction 𝒅 ∈ R3
. In practice, following

Kerbl et al. [2023], we use a spherical harmonics functions 𝑌𝑚
ℓ
(𝒅)

of order𝑚 = 3 defined by the coefficients 𝜷 ∈ R48
. Note that we

are using the ray direction while Kerbl et al. [2023] uses
𝝁−𝒐
∥𝝁−𝒐 ∥ for

performance reason.

Therefore the parametric radiance function can be written as

𝜙𝜷 (𝒅) = 𝑓

(
ℓmax∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

𝛽𝑚ℓ 𝑌𝑚ℓ (𝒅)
)

(3)

where 𝑓 is the sigmoid function to normalize the colors.

3.2 Differentiable Rendering of Particle Representations
Given this parametrization, the scene can be rendered along a ray

𝒓 (𝜏) = 𝒐 + 𝜏𝒅 with origin 𝒐 ∈ R3
and direction 𝒅 ∈ R3

via classical

volume rendering

𝑳(𝒐, 𝒅) =
∫ 𝜏𝑓
𝜏𝑛

𝑇 (𝒐, 𝒅)
(∑

𝑖 (1 − 𝑒−𝜎𝑖𝜌𝑖 (𝒐+𝜏𝒅 ) )𝒄𝑖 (𝒅)
)
𝑑𝜏, (4)

where 𝒄𝑖 (𝒅) = 𝜙𝜷𝑖 (𝒅) is the color of the 𝑖th Gaussian obtained by

evaluating its view-dependant radiance function. The transmittance

function 𝑇 (𝒐, 𝒅) is defined as

𝑇 (𝒐, 𝒅) = 𝑒
−

∫ 𝜏

𝜏𝑛

∑
𝑖 𝜎𝑖𝜌𝑖 (𝒐+𝑡𝒅 )𝑑𝑡 . (5)

Considering 𝛼𝑖 = 𝜎𝑖𝜌𝑖 (x𝑖 ), Equation 4 can be approximated using

numerical integration as

𝑳(𝒐, 𝒅) =
𝑁∑︁
𝑖=1

𝒄𝑖 (𝒅)𝛼𝑖
𝑖−1∏
𝑗=1

1 − 𝛼 𝑗 , (6)

where in this linear approximation, x𝑖 is defined as the point along

the ray 𝒓 with the highest response 𝜌𝑖 of the 𝑖th Gaussian (see 4.3 for

more details). For derivations of the higher order approximations of

𝜌𝑖 please refer to [Keselman and Hebert 2022].

3.3 Hardware-Accelerated Ray Tracing
In this work we use NVIDIA RTX hardware through the NVIDIA

OptiX programming interface [Parker et al. 2010]. Through this in-

terface, geometric primitives such as triangle meshes are processed

to construct a Bounding Volume Hierarchy (BVH
1
). This acceleration

1
For clarity, throughout this work we reference BVH as the de-facto hardware accel-

eration structure. However, since in practice NVIDIA OptiX’s specification interfaces

the implementation of bottom level acceleration structures, we emphasize our pipeline

does not depend on a particular implementation.
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Trace Against BVH and Get k-Closest Proxy Hits (§4.1) Evaluate Particle Response (§4.3) Update Radiance Integral
RenderingProxy Geometries and BVH (§4.1)3D Particles

Repeat Until All Particles Evaluated or Transmiance Theshold

Fig. 3. Overview of the Accelerated Tracing Algorithm: Given a set of 3D particles, we first build the corresponding bounding primitives and insert them
into a BVH. To compute the incoming radiance along each ray, we trace rays against the BVH to get the next k particles. We then compute the intersected
particles’ response and accumulate the radiance according to Equation 6. The process repeats until all particles have been evaluated or the transmittance
meets a predefined threshold and the final rendering is returned.

axis-aligned
bounding box

icosahedron
mesh

false-positive
intersections

stretched
icosahedron

mesh

adaptive
clamping

(ours)

+

Fig. 4. Proxy Geometries: Examples of BVH primitives considered.

structure is optimized for the computation of ray-primitive inter-

sections by dedicated hardware, the RT cores. The programmable

pipeline sends traversal queries to this hardware, freeing the GPU

streaming-multiprocessors (SMs) for the main computational load,

e.g material shading. The interactions of the SMs with the RT cores

are done through the following programmable entry points:

• ray-gen program (ray generation) is where the SMs may initi-

ate a scene traversal for a given ray.

• intersection program is called during the traversal to compute

the precise intersection with potentially hit primitives that are

not directly supported by the hardware.

• any-hit program is called during the traversal for every hit

and may further process or reject the hit.

• closest-hit program is called at the end of the traversal, for

further processing of the closest accepted hit.

• miss program is called at the end of the traversal for further

processing when no hit has been accepted.

Such a pipeline is highly optimized to render opaque primitives,

i.e. the number of expected hits during a traversal is low, with a

minimal amount of interactions between the SMs and the RT cores.

Rendering volumes, where the primitives are semi-transparent, re-

quires traversing and processing many hits per ray. To efficiently

trace a volume, specific approaches must be designed, tailored to

the type of primitives (or particles), their expected size, and distri-

bution across the volume (see for example [Knoll et al. 2019]). In

this work we propose an efficient and differentiable algorithm to

ray trace a volume made of optimized semi-transparent particles

for high-fidelity novel view rendering.

4 METHOD
The proposed volumetric particle tracer requires two core com-

ponents: a strategy to represent particles in an acceleration struc-

ture (BVH) to efficiently test for intersections against them, using

adaptive bounding mesh primitives (Section 4.1), and a rendering

algorithm which casts rays and gathers batches of intersections,

efficiently scheduled onto the NVIDIA OptiX tracing model (Sec-

tion 4.2).

4.1 Bounding Primitives
Any ray-tracer must somehow insert the primitive particles into

a BVH and query the primitives intersected by a ray. The first

challenge is then to decide how to insert particles into a BVH and

conservatively test intersection against them.

The NVIDIA OptiX programming model supports three primi-

tive types which can be inserted into the BVH: triangles, spheres,

and custom primitives given by their axis-aligned bounding boxes

(AABBs). These options admit many possible strategies to build a

BVH over particles, such as constructing naive axis-aligned bounds

as AABBs or spheres, or building bounding triangle meshes. These

strategies have a tradeoff between the cost to test intersection vs. the
tightness of the bound. For instance, simply intersecting a ray with

the AABB around each particle is fast, but a diagonally-stretched

Gaussian particles will cause the traversal to have to evaluate many

false-positive intersections which actually contribute almost noth-

ing to the rendering. None of these strategies necessarily affect the

appearance of the rendered image, but rather the computation speed

and number of low-contribution particles needlessly processed. Bill-

board mesh proxies are used elsewhere [Niedermayr et al. 2023],

but do not apply in our general setting where rays may come from

any direction.

Stretched Polyhedron Proxy Geometry. After experimenting with

many variants (Section 5.2.1), we find it most effective to encapsulate

particles in a stretched regular icosahedron mesh (Figure 4), which

tightly bounds the particle and benefits from hardware-optimized

ray-triangle intersections. A hit against any front-facing triangle of

the bounding mesh triggers processing of the corresponding par-

ticle, as described later in Section 4.3. We fit the bounding proxy

by specifying a minimum response 𝛼min which must be captured

(typically 𝛼min = 0.01), and analytically compute an anisotropic

rescaling of the icosahedron to cover the whole space with at least
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Ray

Scope of K-Closest Hits

Gaussian Center

Max Response Along Ray

Fig. 5. Rendering: on each round of tracing, the next 𝑘 closest hit particles
are collected and sorted into depth order along the ray, the radiance is
computed in-order, and the ray is cast again to collect the next hits.

𝛼min response. Precisely, for each particle we construct an icosahe-

dron with a unit inner-sphere, and transform each canonical vertex

𝒗 according to:

𝒗 ←
√︁
2 log(𝜎/𝛼min)𝑺𝑹𝑇 𝒗 + 𝝁 . (7)

Importantly, this scaling incorporates the opacity of the particles, so

that large nearly-transparent particles may have smaller bounding

primitives, resulting in adaptive clamping of the particles.

4.2 Ray Tracing Renderer
Motivation. Given the ability to cast rays against particles, volu-

metric rendering as in Equation 6 requires accumulating the con-

tribution of particles along the ray in a sorted order. One naive ap-

proach within the NVIDIA OptiX programming model (Section 3.3)

is to repeatedly cast the ray, process the nearest particle with a

closest-hit program, then re-cast the ray to find the next particle.

Another is to traverse the scene only twice, once to estimate the

transmittance function, and once to the compute the integral as in

[Münstermann et al. 2018]. Both of these strategies are prohibitively

expensive, due to the cost of traversing the scene.

Our renderer builds on past approaches for tracing semi-transparent

surfaces or particles: Knoll et al. [2019] repeated gather slabs of parti-

cles and sort within each slab, while Brüll and Grosch [2020] process

all semi-transparent surfaces into a 𝑘-buffer, merging adjacent parti-

cles when the list overflows. As discussed in Section 2.3, because of

their approximations, these algorithms do not produce a consistent

rendering, which prevents differentiation and generates artifacts.

Algorithm. Figure 5, Figure 3, Procedure 1, and Procedure 2 sum-

marize our approach. To compute incoming radiance along each ray,

a ray-gen program traces a ray against the BVH to gather the next

𝑘 particles, using an any-hit program to maintain a sorted buffer of

their indices. For efficiency, at this stage the particle response is not

yet evaluated; all primitive hits are treated as intersected particles.

The ray-gen program then iterates through the sorted array of prim-

itive hits, retrieves the corresponding particle for each, and renders

them according to Equation 6. The process then repeats, tracing a

new ray from the last rendered particle to gather the next 𝑘 particles.

The process terminates once all particles intersecting the ray are

processed, or early-terminates as soon as enough particle density

is intersected to reach a predefined minimum transmittance 𝑇min.

Compared to past approaches this renderer allows for processing

the intersection in a consistent order, without missing any particle

nor approximating the transmittance.

Nonetheless, this proposed algorithm is just one of many possible

variants, chosen for performance after extensive benchmarking.

See Section 5.2 for timings and ablations against a selection of

alternatives considered; we find that subtle changes to the algorithm

have a dramatic effect of speed and quality on densely-clustered

multi-view scenes.

4.3 Evaluating Particle Response

bounding primitive
intersection

maximum
response      orthogonal

projection

After identifying ray-particle inter-

sections, we must choose how to com-

pute the contribution of each particle

to the ray. As with prior work, we

take a single sample per particle, but

we still must choose at what distance

𝜏 along the ray to evaluate that sam-

ple. Knoll et al. [2019] orthogonally project the center of the particle

on to the ray; this strategy is reasonable for isotropic particles,

but can lead to significant error for stretched anisotropic parti-

cles. Instead, we analytically compute a sample location 𝜏max =

argmax𝜏𝜌 (𝒐 + 𝜏𝒅), the point of maximum response from the parti-

cle along the ray. For Gaussian particles, this becomes

𝜏max =
(𝝁 − 𝒐)𝑇 𝚺−1𝒅

𝒅𝑇 𝚺−1𝒅
=
−𝒐𝑇𝑔 𝒅𝑔
𝒅𝑇𝑔 𝒅𝑔

(8)

where 𝒐𝑔 = 𝑺−1𝑹𝑇 (𝒐 − 𝝁) and 𝒅𝑔 = 𝑺−1𝑹𝑇 𝒅.
Note that this strategy incurs a slight approximation in the or-

dering: the particle hits are integrated in the order of the bounding

primitive intersections instead of the order of the sample locations.

However, we empirically confirmed that this approximation does

not lead to any substantial loss in the quality of the end result.

4.4 Differentiable Ray Tracing and Optimization
Differentiable Rendering. Beyond forward-rendering of particle

scenes, our ray tracing renderer is also differentiable, to support

optimizing particle scenes from observed data. To backpropagate

(i.e., reverse-mode differentiate) through the renderer with respect

to particle parameters, we first perform an ordinary forward-pass

render and compute the desired objective functions. Then, in the

backward pass we re-cast the same rays to sample the same set of

particles in order, computing gradients with respect to each shading

expression and accumulating gradients in shared buffers with atomic

scatter-add operations. We implemented all derivative expressions

by hand in an NVIDIA OptiX ray-gen program which is structurally

similar to Procedure 1.
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Procedure 1 Ray-Gen(𝒐, 𝒅,𝑇min, 𝛼min, 𝑘, 𝜏SceneMin, 𝜏SceneMax)
Input: ray origin 𝒐, ray direction 𝒅, min transmittance 𝑇min, min

particle opacity 𝛼min, hit buffer size 𝑘 , ray scene bounds

𝜏SceneMin and 𝜏SceneMax

Output: ray incoming radiance 𝑳, ray transmittance 𝑇

1: 𝑳 ← (0., 0., 0.) ⊲radiance
2: 𝑇 ← 1. ⊲transmittance
3: 𝜏curr ← 𝜏SceneMin ⊲Minimum distance along the ray
4: while 𝜏curr < 𝜏SceneMax and 𝑇 > 𝑇min do

⊲Cast a ray to the BVH for the next 𝑘 hits, sorted
5: H ← TraceRay(𝒐 + 𝜏curr𝒅, 𝒅, 𝑘)
6:

7: for (𝜏
hit
, 𝑖prim) inH do ⊲Render this batch of hits

8: 𝑖
particle

← GetParticleIndex(𝑖prim)
9: 𝛼

hit
← ComputeResponse(𝒐, 𝒅, 𝑖

particle
) ⊲𝜎𝜌 (𝒐 + 𝜏𝒅)

10: if 𝛼
hit

> 𝛼min then
11: 𝑳

hit
← ComputeRadiance(𝒐, 𝒅, 𝑖

particle
) ⊲Refer to

Equation 3 for SH evaluation
12: 𝑳 ← 𝑳 +𝑇 ∗ 𝛼

hit
∗ 𝑳

hit

13: 𝑇 ← 𝑇 ∗ (1 − 𝛼
hit
)

14: 𝜏curr ← 𝜏
hit

⊲Resume tracing from last hit
15: end while
16: return 𝑳, 𝑇

Procedure 2 Any-Hit(𝜏
hit
, 𝑖prim,H , 𝑘)

Input: hit location 𝜏
hit
, primitive index 𝑖prim, hit arrayH , hit buffer

size 𝑘

Output: the hit arrayH may be updated in-place with a new entry

1: h← (𝜏
hit
, 𝑖prim)

2: for 𝑖 in 0 . . . 𝑘-1 do ⊲insertion sort into hit array
3: if ℎ.𝜏

hit
< H[𝑖] .𝜏

hit
then

4: swap(H [𝑖], ℎ)
5: ⊲ignore 𝑘-closest hits to prevent the traversal from stopping
6: if 𝜏

hit
< H[𝑘 − 1] .𝜏

hit
then

7: IgnoreHit()

Optimization. To fit particle scenes using our ray tracer, we adopt
the optimization scheme of Kerbl et al. [2023], including pruning,

cloning and splitting operations. One significant change is needed:

Kerbl et al. [2023] track screen-space gradients of particle positions

as a criteria for cloning and splitting, but in our more-general setting,

screen space gradients are neither available normeaningful—instead,

we use gradients in 3D world-space for the same purpose. Recent

work has proposed many promising extensions to the optimization

scheme of Kerbl et al. [2023]. While our ray tracer is generally

compatible with any of these extensions, we stay faithful to the

original approach for the sake of consistent comparisons. It should

also be noted that as particles are updated during optimization, the

ray tracing BVH must be regularly rebuilt (see Figure 9, bottom left

for BVH build time).

Kernelized Surface (SGG2) Cosine Wave Modulation (CSGG2)

Generalized Gaussian (GG2)3D Gaussian

(b) Kernelized Surface Particles Reconstruction(a) Particle Kernel Functions

Fig. 6. Particle Kernel Functions: (a) In addition to 3D Gaussians, in this
work we investigated three other particle types: the generalized Gaussian
(GG2), kernelized surface (SGG2) and cosine wave modulation (CSGG2)
particles. (b) Shows radiance and normal reconstructions obtained with the
kernelized surface particles for two scenes.

Training with Incoherent Rays. Optimization in computer vision

often benefits from stochastic descent, fitting to randomly-sampled

subsets of a problem on each iteration. However, differentiable ras-

terization can only efficiently render whole images or tiles, and thus

efficient stochastic optimization over the set of pixels in a scene is

not possible. In our ray tracer, we are free to train with stochastically-
sampled rays, drawn at random or according to some importance

sampling during training, see Section 5.1. Note that when stochastic

sampling is used, window-based image objectives such as SSIM

cannot be used.

4.5 Particle Kernel Functions
Our formulation does not require the particles to have a Gauss-

ian kernel, enabling the exploration of other particle variants. We

consider a general particle defined by its kernel function 𝜌 (𝒙). In ad-

dition to the standard Gaussian, we investigate three other variants,

visualized in Figure 6:

• The standard 3D Gaussian kernel given in Equation 1 as

𝜌 (𝒙) = 𝜎𝑒−(𝒙−𝝁 )
𝑇
𝚺
−1 (𝒙−𝝁 ) ,

• Generalized Gaussians of degree 𝑛 (we use 𝑛 = 2):

𝜌𝑛 (𝒙) = 𝜎𝑒−( (𝒙−𝝁 )
𝑇
𝚺
−1 (𝒙−𝝁 ) )𝑛 . (9)

• Kernelized surfaces: 3DGaussianswith a null 𝒛 scale as in [Huang
et al. 2024].

• Cosine wave modulations along axis 𝑖:

𝜌𝑐 (𝒙) = 𝜌 (𝒙) (0.5 + 0.5𝑐𝑜𝑠 (𝜓 (𝑺−1𝑹𝑇 (𝒙 − 𝝁))𝑖 )) (10)

with𝜓 an optimizable parameter.

Comparative evaluations with these particles are presented in Ta-

ble 4. The generalized Gaussian kernel function defines denser par-

ticles, reducing the number of intersections and increasing the per-

formance by a factor of 2 compared to standard Gaussians, see

Section 5.2.3 for more discussion. The kernelized surface variant

defines flat particles with well-defined normals, which can be en-

capsulated by a two triangle primitive (Section 4.1) well-adapted to

our tracing model. Finally, the modulation by a cosine wave aims to

model a particle with spatially varying radiance.
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Table 1. Results for our approach and baselines on a variety of novel view synthesis benchmarks.

MipNeRF360 Tanks & Temples Deep Blending
Method\Metric PSNR↑ SSIM↑ LPIPS↓ Mem. ↓ PSNR↑ SSIM↑ LPIPS↓ Mem. ↑ PSNR↑ SSIM↑ LPIPS↓ Mem. ↓
Plenoxels 23.63 0.670 - 2.1GB 21.08 0.719 - 2.3GB 23.06 0.795 - 2.7GB

INGP-Base 26.43 0.725 - 13MB 21.72 0.723 - 13MB 23.62 0.797 - 13MB

INGP-Big 26.75 0.751 - 48MB 21.92 0.745 - 48MB 24.96 0.817 - 48MB

MipNeRF360 29.23 0.844 - 8.6MB 22.22 0.759 - 8.6MB 29.40 0.901 - 8.6MB

Zip-NeRF 30.38 0.883 0.197 - - - - - - - - -

3DGS (paper) 28.69 0.871 - 734MB 23.14 0.853 - 411MB 29.41 0.903 - 676MB

3DGS (checkpoint) 28.83 0.867 0.224 763MB 23.35 0.837 - 422MB 29.43 0.898 - 704MB

Ours (reference) 28.69 0.871 0.220 387MB 23.03 0.853 0.193 519MB 29.89 0.908 0.303 329MB

Ours 28.71 0.854 0.248 383MB 23.20 0.830 0.222 489MB 29.23 0.900 0.315 287MB

5 EXPERIMENTS AND ABLATIONS
In this section we evaluate the proposed approach on several stan-

dard benchmark datasets for quality and speed, and perform ablation

studies on key design choices in Section 5.2. Additional details on

experiments and implementation can be found in the appendix.

Method Variants. In the experiments that follow, we will refer

to two variants of our method. The Ours (reference) variant corre-
sponds to [Kerbl et al. 2023] as closely as possible. It employs regular

3D Gaussian particles, and leaves the optimization hyperparameters

unchanged. We treat this as a high-quality configuration. The Ours
variant is adapted based on the experiments that follow, improving

runtime speed at a slight expense of quality. It uses degree-2 gen-

eralized Gaussian particles, a density learning rate to 0.09 during

optimizing, as well as optimizing with incoherent rays in a batch

size of 2
19

starting after 15,000 training iterations. Empirically, we

find that the larger density learning rate of this model produces

denser particles. When combined with the faster fall-off of degree-2

generalized Gaussian particles compared to regular Gaussians, this

leads to fewer hits along the rays and faster rendering speeds with

minimal quality loss.

5.1 Novel View Synthesis Benchmarks
Baselines. There is a significant amount of recent and ongoing

research on scene representation.We include comparisons to several

representative well-known methods, including 3DGS [Kerbl et al.

2023], INGP [Müller et al. 2022], and MipNeRF360 [Barron et al.

2022], as a standard for comparison. The latter two are widely-

used ray-marching methods that, like this work, do not have the

limitations of rasterization. We additionally compare with the non-

neural method of Plenoxels [Sara Fridovich-Keil and Alex Yu et al.

2022].

Evaluation Metrics. We evaluate the perceptual quality of the

novel-views in terms of peak signal-to-noise ratio (PSNR), learned
perceptual image patch similarity (LPIPS), and structural similarity

(SSIM) metrics. To evaluate the efficiency, we measure GPU time re-

quired for rendering a single image without the overhead of storing

the data to a hard drive or visualizing them in a GUI. Specifically,

we report the performance numbers in terms of frames-per-second

measured on a single NVIDIA RTX 6000 Ada. For all evaluations,

we use the dataset-recommended resolution for evaluation.

5.1.1 MipNeRF360. MipNeRF360 [Barron et al. 2022] is a challeng-

ing dataset consisting of large scale outdoor and indoor scenes. In

our evaluation, we use the four indoor (room, counter, kitchen,
bonsai) and three outdoor (bicycle, garden, stump) scenes with-
out licensing issues. In line with prior work, we used images down-

sampled by a factor two for the indoor and a factor four for the

outdoor scenes in all our evaluations.

Table 1 shows quantitative results, while novel-views are qual-

itatively compared in Figure 7. In terms of quality, our method

performs on par or slightly better than 3DGS [Kerbl et al. 2023] and

other state-of-the-art methods. For this dataset, we also compare

our method against the recent top-tier method of Zip-NeRF [Barron

et al. 2023] which achieves 30.38 PSNR. In terms of runtime (Table 2),

at 78 FPS our efficient ray tracing implementation is approximately

three times slower than rasterization (238 FPS), while maintaining

interactive speeds compared to high-quality ray-marching based

works MipNeRF360 and Zip-NeRF (<1 FPS). Zip-NeRF employs

multisampling to approximate conical frustums in the ray-casting

process, combining MipNeRF360’s anti-aliasing techniques with

the speedup mechanism of INGP. While achieving unprecedented

rendering quality, Zip-NeRF does not support real-time rendering

(< 1 FPS).

5.1.2 Tanks & Temples. Tanks & Temples dataset contains two

large outdoor scenes (Truck and Train) with a prominent object in

the center, around which the camera is rotating. These scenes are

particularly challenging due to the illumination differences between

individual frames as well as the presence of dynamic objects.

Similar to the results on MipNeRF360 dataset, our method again

performs on parwith the state-of-the-art methods in terms of quality,

while the speed is approximately 1.7 times slower than 3DGS at 190

FPS. Qualitative results are depicted in Figure 7. On this dataset,

Ours achieves better PSNR than our Ours (reference), but is still
worse in terms of LPIPS and SSIM. We hypothesize that this is due

to the lack of SSIM loss supervision when training the model with

incoherent rays.

5.1.3 Deep Blending. Following Kerbl et al. [2023], we use two

indoor scenes Playroom and DrJohnson from the Deep Blending
dataset. Table 1 shows that our reference implementation Ours
(reference) outperforms all baselines across all qualitative metrics.

Different to other datasets, we observe a larger quality drop of Ours.
This is a result of a quality drop on Playroomwhere we observed in-
stability of the training with incoherent rays. We leave more detailed

investigation and parameter tuning of incoherent rays training for

future work.
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INGP 3DGS Ours (reference)Ground Truth Ours

Fig. 7. Novel-View Synthesis: Qualitative comparison of our novel-view synthesis results relative to baselines (insets (•) show per-result closeups). For
fairness, this comparison uses the same test views picked by [Kerbl et al. 2023]. Additional comparisons with [Barron et al. 2022] are included in the appendix.
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Table 2. Rendering performance: rasterization v.s. ray tracing.

FPS↑
Method MipNeRF360 Tanks & Temples Deep Blending

3DGS (checkpoint) 238 319 267

Ours (reference) 55 143 77

Ours 78 190 119

5.1.4 NeRF Synthetic. NeRF Synthetic is a commonly used syn-

thetic object-centring dataset introduced by Mildenhall et al. [2020].

The eight scenes with synthetic objects were rendered in Blender

and display strong view-dependent effects and intricate geometry

structures. See Table 5 in the appendix for a per-scene breakdown.

Both versions of our method outperform all the baselines in terms

of PSNR. In fact, Ours outperforms Ours (reference) on seven out of

eight scenes. We conjecture this is due to the simplicity of scenes

which are well represented with less hits, and the positive contribu-

tion of training with incoherent rays. On these simpler scenes with

lower resolution images, our method is capable of rendering novel

views at 450FPS and is only 50% slower than 3DGS.

5.1.5 Zip-NeRF and Distortion. The rasterization approach in 3DGS
[Kerbl et al. 2023] implicitly treats supervision images as coming

from perfect-pinhole cameras, whereas our ray-tracing approach

can easily be applied directly to highly-distorted cameras such as

fisheye captures. Images can be undistorted through postprocessing

to enable fitting with 3DGS, but this comes at a cost, including

significant cropping or wasted space in the image plane.

We demonstrate this effect on the Zip-NeRF dataset [Barron et al.

2023], which includes four large-scale scenes featuring both indoor

and outdoor areas. These scenes are originally captured from highly

distorted fisheye cameras, with undistorted versions also provided

through postprocessing. Table 3 and Figure 8 compare the quality of

training 3DGS on undistorted views, vs. our ray-traced method on

the undistorted views or the original distorted images. Our model

achieves the highest quality when trained on the original distorted

images, partly due to the loss of input supervision signals caused

by the cropping of marginal pixels during undistortion. Note that

rendering 3DGS from the original fisheye views is impossible, as its

tile-based rasterizer is designed for perfect-pinhole rendering.

5.2 Ray Tracing Analysis and Ablations
We evaluate the performance of the proposed ray tracer and com-

pare to alternatives. Experiments are evaluated on the union of all

validation datasets from Section 5.1. We measure forward rendering

time, which we observed to correlate closely with the per-iteration

time for the backward pass.

5.2.1 Particle Primitives. We first consider different bounding prim-

itive strategies as discussed in Section 4.1. The primitives evaluated

are:

• Custom primitive AABBs: bounding box primitive, see Fig-

ure 4 left.

• Octahedron: an eight-faced regular polyhedron mesh.

• Icosahedron: a twenty-faced regular polyhedron mesh.

• Icosahedron + unclamped: icosahedron without adaptive

clamping.

Table 3. Comparison of PSNR achieved by our method versus 3DGS [Kerbl
et al. 2023] when trained and tested on distorted or undistorted views.

Test views

Method undistorted original (fisheye)

3DGS w/ undistorted inputs 24.18 N/A

Ours (reference) w/ undistorted inputs 24.59 23.69

Ours (reference) w/ original inputs 24.71 24.40

Scales are determined as in Equation 7, except the unclamped variant
which omits the opacity term in that expression.

Figure 9 (bottom-left) shows the time to build a BVH relative

to the number of particles for the different primitives. For simple

AABBs, the build time is almost constant whereas for the more

complex icosahedron based primitives, the build time is close to

linear with more than 30ms per millions of particles. The same figure

also gives the framerate vs. the number of particles for different

primitives. First, the number of particles does not strictly determine

the performance. Second, more complex primitives with tighter

bounding envelopes yield higher framerates, and adaptive clamping

based on opacity has a large positive effect.

5.2.2 Tracing Algorithms. We consider several alternatives of the

proposed ray tracer from Section 4.2, both comparisons to prior

work and variants of our method. The evaluated approaches are:

• Naive closest-hit tracing: repeated closest-hit ray-tracing to

traverse every particle hitting the ray in depth order.

• Slab tracing [Knoll et al. 2019] (SLAB): tracing slabs along

the ray, order independent collection of the 𝑘-first hits in the

any-hit program, sorting and integrating the hits in the ray-gen
program.

• Multi-layer alpha tracing [Brüll andGrosch 2020] (MLAT):
tracing a single ray with in depth order collection of the hits

and merging the closest hits when the 𝑘 buffer is full in the

any-hit program.

• Our proposed method: tracing a dynamic number of rays

with in-order collection of the hits, stopping to evaluate con-

tributions when the 𝑘 buffer is full in the any-hit program.

• Ours + tiled tracing: tracing one ray per 𝑁 × 𝑁 tile, but still

evaluating appearance per pixel, akin to tile-based rasteriza-

tion.

• Ours + stochastic depth sampling: tracing a single ray

with in depth order collection of the 𝑘 first accepted sam-

ples. Samples are accepted based on the importance sampling

𝑞(𝒙) = 𝜌 (𝒙).
For each algorithm with a choice of parameters (size of the array,

number of slabs, or number of samples), we perform a parameter

sweep and present the best-performing setting.

The performance relative to the accuracy of these implementa-

tions are shown in the top-left of Figure 9. Naive closest-hit tracing

is almost twice as slow as our method, due to over-traversal of the

BVH. Slab tracing and multi-layer alpha tracing are designed to

minimize over-traversal and hence achieve much better runtime

performance, but this speed comes from approximate image forma-

tion (ordering approximation for MLAT, under-sampling particles

for SLAB), and the accuracy of these methods is substantially lower.
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Ours (Reference) w/ original inputsGround Truth 3DGS w/ undistorted inputs Ours (Reference) w/ undistorted inputs

Fig. 8. Qualitative comparison of our results against 3DGS [Kerbl et al. 2023] when trained on distorted or undistorted views and then rendered from
undistorted views.
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Fig. 9. Quantitative Ablation. Top left: comparison of the different tracing
algorithms on the combination of our datasets. Top right: Impact of the hit
payload buffer size on our proposed tracing algorithm. Bottom left: Impact
of the different primitives on both the BVH building time and the FPS.
Bottom right: Mean number of hits vs. mean FPS for every sequence of our
dataset.

In the differentiable setting, we find that these these approxima-

tions make those methods unusable for optimizing scenes. Adding

tile-based rendering to our approach yields a promising speedup, at

the cost of a small approximation. We do not see immediate benefit

from stochastic depth sampling, because most of the computation

has to be done in the any-hit program, preventing a good balance

of the tracing workload.

5.2.3 Particle Kernel Function. In Section 4.5 we consider particle

kernel functions beyond Gaussians. Table 4 gives results; notably

generalized Gaussians with 𝑛 = 2 significantly increase ray tracing

speed at only a small cost of quality.

Figure 9 (bottom-right) shows the mean-hits number versus the

performance for the Gaussian kernel and the generalized Gaussian

kernel of degree 2. It reaffirms that the performance depends on the

Table 4. Quality and speed tradeoffs for various particle kernel functions.

Tanks & Temples Deep Blending
Particle\Metric PSNR↑ FPS↑ PSNR↑ FPS↑
Gaussian (reference) 23.03 143 29.89 77

Generalized Gaussian (𝑛 = 2) 22.68 277 29.74 141

2D Gaussians 22.70 241 29.74 122

Cosine wave modulation 22.77 268 29.79 126

0 10 20 30 40 50
ray hit counts

Fig. 10. Ray Hits for Kernel Functions: Visualization of the number of
per-ray particles hits for the Gaussian (left) and for the generalized Gaussian
kernel function of degree 2 (right) (• represents no hits).

number of hits rather than the number of particles, as noted previ-

ously. This explains the source of the speedup for the generalized

Gaussian kernel, as the sharper extent reduces the number of hits.

See Figure 10 for a visual plot.

5.2.4 Hit Buffer Size. Figure 9 (top-right) measures the effect of

the particle buffer size 𝑘 , which determines how many particle hits

are gathered during each raycast before stopping to evaluate their

response. False rejected hits are hits which are traversed, but not

collected into the buffer because it is full with closer hits; these hits

often must be re-traversed later. False accepted hits are hits which are
gathered into the buffer, but ultimately do not contribute to radiance

because the transmittance threshold is already met. Both of these

false hits harm performance, and choosing the particle batch size is

a tradeoff between them. We find 𝑘 = 16 to offer a good compromise

and use it in all other experiments.
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Ground Truth Ours - 0 Iterations (0%) Ours - 600 Iterations (2%) Ours - 2000 Iterations (6.7%) 3DGS
PSNR: 18.67

PSNR: 23.37

PSNR: 18.43

PSNR: 26.15

PSNR: 30.52

PSNR: 24.54

PSNR: 26.80

PSNR: 31.19
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PSNR: 30.32
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Fig. 11. 3DGS Finetuning: Qualitative results of finetuned models from pretrained 3DGS [Kerbl et al. 2023] checkpoints after different numbers of iterations.
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Fig. 12. Finetuning Pretrained 3DGS Models: After only 500 iterations
of finetuning, we can recover most of the perceptual quality of 3DGS [Kerbl
et al. 2023]. After 2k iterations we match or outperform 3DGS across all
datasets.

6 APPLICATIONS
Most importantly, efficient differentiable ray tracing enables new

applications and techniques to be applied to particle scene represen-

tations.

6.1 Ray-Based Effects
First, we the radiance field rendering pipeline with a variety of visual

effects which are naturally compatible with ray tracing (Figure 2

and 13). Here we demonstrate only manually-specified forward

rendering, although inverse rendering in concert with these effects

is indeed supported by our approach, and is a promising area for

ongoing work.

Reflections, Refractions and Inserted Meshes. Optical ray effects are
supported by interleaved tracing of triangular faces and Gaussian

particles. Precisely, we maintain an extra acceleration structure con-

sisting only of mesh faces for additional inserted geometry. When

casting each ray in Procedure 1, we first cast rays against inserted

meshes; if a mesh is hit, we render all particles only up to the hit, and

then compute a response based on the material. For refractions and

reflections, this means continuing tracing along a new redirected

ray according to the laws of optics. For non-transparent diffused

meshes, we compute the color and blend it with the current ray

radiance, then terminate the ray.

Depth of Field. Following [Müller et al. 2022], we simulate depth

of field by progressively tracing multiple independent ray samples

per pixel (spp), weighted together with a moving average to denoise

the output image. The examples in Figures 2 and 13 use 64-256

spp, although convergence is often reached with fewer samples by

selecting subsamples with low discrepancy sequences [Burley 2020].

Artificial Shadows. Even in radiance field scenes with baked-in

lighting, simple shadow effects can be emulated by casting a ray

towards a point or mesh emitter, and artificially darkening the

contribution from that point if the light is not visible. We adopt

this approach, casting shadow rays after computing the directional

contribution from each particle.

6.2 Instancing
In rendering, instancing is a technique to render multiple trans-

formed copies of an object with greatly reduced cost. Although

rendering libraries may support some form of instancing in the

context of rasterization, the technique is particularly effective for

ray tracing. This is because repeated copies of an object can be

stored as linked references in subtrees of the BVH, without actually

duplicating the geometry. This allows for scaling to 100s or 1000s of

instanced objects at little additional cost—the same is not possible

with rasterization. Our efficient ray tracer enables particle scene

data to be instanced, as shown in Figure 14 where we crop an object

from a fitted scene and render 1024 copies of it at 25 FPS.
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Fig. 13. Rendering Effects: The ray traced nature of our reconstructions allows seamless integration with traditional ray traced operations for reflecting and
refracting rays, as well as casting shadows on nearby particles, as well as applying camera effects.

Fig. 14. Instancing: 1024 instances of the Tank & Temples Truck, rendered
at more than 25 FPS.

Fig. 15. Stochastic Sampling: Left, scene rendered with our proposed
algorithm. Center, rendered with stochastic sampling (4 samples). Right,
denoised with the NVIDIA OptiX denoiser.
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(a) Nonlinear Camera Models (b) Rolling Shutter Motion Compensation

Fisheye Inputs

Camera Motion Directions

Reconstructions (Novel Views)
PSNR:40.53
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𝑓𝑛+1 𝑓𝑛+2 𝑓𝑛+3 𝑓𝑛+4 𝑓𝑛+5Reconstruction (Perspective)

Perspective GT (Unseen)

Ours PSNR:25.47Reconstruction (Perspective View)

Fig. 16. Complex Cameras: (a) Compared to rasterization-based approaches, our ray tracing-based formulation naturally supports complex camera models
as inputs like distorted fisheye lenses (left), which can be re-rendered using different camera models like regular perspective cameras (right), achieving high
reconstruction quality relative to unseen references (see insets (•) - this synthetic cozyroom scene is by [Ma et al. 2021]). (b) Ray tracing also naturally enables
compensating for time-dependent effects like rolling shutter imagine sensors, which induce distortions due to sensor motion. This effect is illustrated on the
left by multiple different frame tiles 𝑓𝑖 of a single solid box rendered by a left- and right-panning rolling shutter camera with a top-to-bottom shutter direction.
By incorporating time-dependent per-pixel poses in the reconstruction, our method faithfully recuperates the true undistorted geometry (right).

6.3 Denoising and Stochastic Sampling
In ray tracing more broadly, research on stochastic integration tech-

niques is key to highly sample-efficient yet perceptually compelling

renders. As a small demonstration, we show how our approach can

be combined with stochastic sampling and denoising.

As discussed in Section 5.2.2, our approach may be extended to

stochastic-sampling by rejecting the hits received in the any-hit
program based on the importance sampling distribution 𝑞 = 𝜌 (𝒙).
Since traversal stops as soon as the 𝑘-closest accepted samples are

collected, this modification noticeably improves performance (see

Figure 9 top-left). This performance comes at a quality cost, but

as shown in Figure 15, the resulting noise has statistics that an

off-the-shelf denoiser can easily remove.

6.4 Complex Cameras and Autonomous Vehicle Scenes
Ray tracing makes it easy, efficient, and accurate to render from

exotic cameras which are far from ideal pinholes, such as highly-

distorted fisheye cameras and those with rolling shutter effects

(Figure 16). While optical distortions for low-FOV lenses can be

tackled to some extent by image rectification, and rolling shutter

distortions can be approached by associating rasterized tiles to

row/columns with consistent timestamps, both workarounds can’t

be applied simultaneously, as image rectification distorts the sets of

concurrently measured pixels in a non-linear way. In ray tracing,

handling complex cameras simply means generating each ray with

source and direction which actually correspond to the underlying

camera, even if those rays may be incoherent and lack a shared

origin.

Autonomous Vehicles. The imaging systems used on autonomous

vehicle (AV) platforms and other robot systems often incorporate

such cameras, and it is very important to reconstruct and render

them accurately in those applications. Figure 17, gives an example

of an autonomous driving scene reconstructed from a side-mounted

camera, which exhibits both apparent intrinsic camera and rolling

shutter distortion effects.

To further highlight the importance of accurately handling these

effects, we perform a quantitative evaluation of our method against

Distorted Inputs

Reconstruction (Fisheye, Static Pose, PSNR:28.05) Reconstruction Input

Reconstruction (Perspective)

Fig. 17. AV Scene Reconstruction: Real-world AV and robotics applica-
tions often have to respect both distorted intrinsic camera models and are,
at the same time, affected by time-dependent effects like rolling shutter
distortions as frames are exposed at high sensor speeds. Our ray tracing-
based reconstruction is well-suited to handle both challenges simultaneously,
which we illustrated by an example of a side-facing top-to-bottom rolling
shutter camera on an AV vehicle: the top inset (•) depicts faithful removal
of the intrinsic camera model distortion by rendering with an undistorted
camera, while the bottom inset (•) shows our ability to remove the apparent
rolling-shutter distortions of the inputs by rendering from a static camera
pose (linear indicators (•) exemplify the complex distortion of the inputs).

its rasterization equivalent 3DGS [Kerbl et al. 2023] on autonomous

driving scenes.We select 9 scenes from the Waymo Open Perception
dataset [Sun et al. 2020] with no dynamic objects to ensure accurate

reconstructions. Both methods are trained with the images captured

by the camera mounted on the front of the vehicle to reconstruct

the scene. We make several changes to the training protocol to

adapt it to this data, including incorporating lidar depth, see the

appendix for details. For the case of 3DGS, we rectify the images and

ignore the rolling shutter effects, while with our tracing algorithm

we can make use of the full camera model and compensate for

the rolling shutter effect (see Figure 17). Ray tracing achieves a

rectified PSNR of 29.99 on this benchmark, compared to 29.83 for

ordinary 3DGS—the improvement is modest, but it corresponds to

correctly reconstructing important geometries, such as the signpost

in Figure 17.
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7 DISCUSSION

7.1 Differences Between Ray Tracing and Rasterization
Here, we recap key differences between our ray tracer and the

Gaussian splatting rasterizer proposed by Kerbl et al. [2023].

Generality. Splat rasterization accelerates rendering by process-

ing a screen grid of pixel rays emanating from a single viewpoint in

16𝑥16 tiles, whereas ray tracing uses a BVH and can render along

arbitrary distributions of rays from any direction.

Primary vs.General Rays. As in graphicsmore broadly, ray tracing

has significant benefits over rasterization to model general lighting

and image formation. In this work, we demonstrate a variety of

effects such as reflection, refraction, depth of field, and artificial

shadows enabled by ray tracing (Section 6.1). In addition, we note

that differentiable ray tracing opens the door to further research on

global illumination, inverse lighting, and physical BSDFs.

Complex Cameras. Using per-pixel rays, ray tracing can easily

model more general image formation processes that exhibit non-

linear optical models such as highly-distorted and high-FOV fisheye

lenses, as well as time-dependent effects like rolling shutter dis-

tortions, which originate from rows/columns exposed at different

timestamps (cf. [Li et al. 2024b]). These are important for robotics

(Section 6.4), yet difficult or impossible to model with tile-based

rasterization.

Speed. For forward rendering, our approach achieves real-time

performance, and is only about 2× slower than 3DGS’s tiled raster-

ization in the basic case of rendering primary rays from pinhole

cameras (see Table 2). For differentiable rendering to fit scenes, our

ray tracing approach is 2×-5× slower than rasterization, mainly due

to the need to rebuild the BVH (Section 4.4), and additional arith-

metic needed to evaluate the backward pass as terms are no longer

shared between pixels. As an example, for the Tanks & Temples’s
Truck scene, ray tracing is 3.3× slower per iteration of optimiza-

tion, with a mean iteration time of 100ms (30ms spent on the BVH

construction, 15ms on the forward pass and 30ms on the backward

pass), while the rasterization requires 30ms per-iteration (7ms on

the forward pass and 10ms on the backward pass). Furthermore,

our approach enables training with incoherent rays as discussed in

Section 4.4, but in that case ray incoherency further increases the

cost of ray tracing, leading to 5× slower optimization.

Sub-Pixel Behavior. Splat rasterization implicitly applies a pixel-

scale convolution to Gaussians [Zwicker et al. 2001], whereas our

ray tracer truly point-samples the rendering function and has no

such automatic antialiasing. This may lead to differences of ren-

dered appearance for subpixel-skinny Gaussian particles. However,

point-sampled rendering is well-suited to modern denoisers (see Sec-

tion 6.3).

Interoperability. It is possible to directly render scenes trained

with the rasterizer under the ray tracing renderer, however due to

subtle differences noted above, there will be a noticeable drop in

quality when directly switching between renderers. This can be

quickly remedied with fine-tuning (see Figure 12).

Approximations. Rasterization makes an approximation by eval-

uating directional appearance through the spherical harmonics 𝜷
from a single ray direction, meaning each particle has constant ap-

pearance direction in all pixels of an image. To support arbitrary

distributions of rays in our ray tracer, each particle is evaluated

exactly with the appropriate incoming ray direction. Additionally,

rasterization approximates depth ordering in 16x16 tiles.

7.2 Limitations and Future Work
Our ray tracer is carefully designed to make use of hardware acceler-

ation and offers significant speedup over baseline implementations

(Figure 9), however ray tracing is still slower than rasterization

when rendering from a pinhole camera. Additionally, the need to

regularly rebuild the BVH during training incurs additional cost and

adds overhead to dynamic scenes. Nonetheless, our implementation

is still fast enough for training and interactive rendering, and more

importantly it opens the door to many new capabilities such as

distorted cameras and ray-based visual effects (Section 6). See Sec-

tion 7.1 for an in-depth discussion of the trade-offs of rasterization

vs. ray tracing in this setting.

Looking forward, this work creates great potential for further

research on inverse rendering, relighting, and material decomposi-

tion on particle representations. Indeed, recent work in this direc-

tion [Gao et al. 2023; Liang et al. 2023], has relied on approximations

due to the lack of an efficient ray tracer. More broadly, there is

much promising research to be done unifying advances in scene

reconstruction from computer vision with the formulations for pho-

torealistic rendering from computer graphics.

ACKNOWLEDGMENTS
We are grateful to Hassan Abu Alhaija, Ronnie Sharif, Beau Per-

schall and Lars Fabiunke for assistance with assets, to Greg Muth-

ler, Magnus Andersson, Maksim Eisenstein, Tanki Zhang, Diet-

ger van Antwerpen and John Burgess performance feedback, to

Thomas Müller, Merlin Nimier-David, and Carsten Kolve for inspi-

ration, to Ziyu Chen, Clement Fuji-Tsang, Masha Shugrina, and

George Kopanas for experiment assistance, and to Ramana Kiran

and Shailesh Mishra for typo fixes. The manta ray image is courtesy

of abby-design.

REFERENCES
Maksim Aizenshtein, Niklas Smal, and Morgan McGuire. 2022. Wavelet Transparency.

CoRR abs/2201.00094 (2022). arXiv:2201.00094 https://arxiv.org/abs/2201.00094

Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry Ulyanov, and Victor Lem-

pitsky. 2020. Neural point-based graphics. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXII 16.
Springer, 696–712.

Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-

Brualla, and Pratul P. Srinivasan. 2021. Mip-NeRF: A Multiscale Representation for

Anti-Aliasing Neural Radiance Fields. ICCV (2021).

Jonathan T. Barron, BenMildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman.

2022. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields. CVPR (2022).

Jonathan T. Barron, BenMildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman.

2023. Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields. arXiv (2023).

Louis Bavoil, Steven P. Callahan, Aaron Lefohn, João L. D. Comba, and Cláudio T. Silva.

2007. Multi-fragment effects on the GPU using the k-buffer (I3D ’07). Association
for Computing Machinery, New York, NY, USA, 97–104. https://doi.org/10.1145/

1230100.1230117

Laurent Belcour, Cyril Soler, Kartic Subr, Nicolas Holzschuch, and Fredo Durand. 2013.

5D covariance tracing for efficient defocus and motion blur. ACM Transactions on
Graphics (TOG) 32, 3 (2013), 1–18.

https://arxiv.org/abs/2201.00094
https://arxiv.org/abs/2201.00094
https://doi.org/10.1145/1230100.1230117
https://doi.org/10.1145/1230100.1230117


232:16 • Moenne-Loccoz, Mirzaei et al.

Felix Brüll and Thorsten Grosch. 2020. Multi-Layer Alpha Tracing. In Vision, Modeling,
and Visualization, Jens Krüger, Matthias Niessner, and Jörg Stückler (Eds.). The

Eurographics Association. https://doi.org/10.2312/vmv.20201183

Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and Michael Cohen.

2001. Unstructured Lumigraph Rendering. In Proceedings of the 28th Annual Confer-
ence on Computer Graphics and Interactive Techniques (SIGGRAPH ’01). Association
for Computing Machinery, New York, NY, USA, 425–432.

Brent Burley. 2020. Practical Hash-based Owen Scrambling. Journal of Computer Graph-
ics Techniques (JCGT) 10, 4 (29 December 2020), 1–20. http://jcgt.org/published/

0009/04/01/

Abe Davis, Marc Levoy, and Fredo Durand. 2012. Unstructured Light Fields. Comput.
Graph. Forum 31, 2pt1 (2012), 305–314.

Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. 1996. Modeling and Rendering

Architecture from Photographs: A Hybrid Geometry- and Image-Based Approach.

In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’96). Association for Computing Machinery, 11–20.

Daniel Duckworth, Peter Hedman, Christian Reiser, Peter Zhizhin, Jean-François Thib-

ert, Mario Lučić, Richard Szeliski, and Jonathan T. Barron. 2023. SMERF: Stream-

able Memory Efficient Radiance Fields for Real-Time Large-Scene Exploration.

arXiv:2312.07541 [cs.CV]

Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang.

2023. LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction

and 200+ FPS. arXiv:2311.17245 [cs.CV]

Jian Gao, Chun Gu, Youtian Lin, Hao Zhu, Xun Cao, Li Zhang, and Yao Yao. 2023. Re-

lightable 3D Gaussian: Real-time Point Cloud Relighting with BRDF Decomposition

and Ray Tracing. arXiv:2311.16043 (2023).
Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. 1996. The

Lumigraph. In Proceedings of the 23rd Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’96). Association for Computing Machinery,

43–54.

Jeffrey P Grossman and William J Dally. 1998. Point sample rendering. In Rendering
Techniques’ 98: Proceedings of the Eurographics Workshop in Vienna, Austria, June
29—July 1, 1998 9. Springer, 181–192.

Antoine Guédon and Vincent Lepetit. 2023. SuGaR: Surface-Aligned Gaussian Splatting

for Efficient 3D Mesh Reconstruction and High-Quality Mesh Rendering. arXiv
preprint arXiv:2311.12775 (2023).

Yuan-Chen Guo, Di Kang, Linchao Bao, Yu He, and Song-Hai Zhang. 2022. Nerfren:

Neural radiance fields with reflections. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 18409–18418.

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2024. 2D

Gaussian Splatting for Geometrically Accurate Radiance Fields. SIGGRAPH (2024).

Yingwenqi Jiang, Jiadong Tu, Yuan Liu, Xifeng Gao, Xiaoxiao Long, Wenping Wang,

and Yuexin Ma. 2024. Gaussianshader: 3d gaussian splatting with shading functions

for reflective surfaces. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 5322–5332.

Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Har-

monic Coordinates for Character Articulation. ACM Trans. Graph. 26, 3 (jul 2007),
71–es. https://doi.org/10.1145/1276377.1276466

Michael M. Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson Surface

Reconstruction. In Proceedings of the Fourth Eurographics Symposium on Geometry
Processing (SGP ’06, Vol. 256). Eurographics Association, 61–70.

Michael M. Kazhdan and Hugues Hoppe. 2013. Screened poisson surface reconstruction.

ACM Trans. Graph. 32, 3 (2013), 29:1–29:13.
Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 2023.

3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM Transactions on
Graphics 42, 4 (July 2023). https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

Bernhard Kerbl, Andreas Meuleman, Georgios Kopanas, Michael Wimmer, Alexandre

Lanvin, and George Drettakis. 2024. A Hierarchical 3D Gaussian Representation for

Real-Time Rendering of Very Large Datasets. ACM Transactions on Graphics 43, 4
(July 2024). https://repo-sam.inria.fr/fungraph/hierarchical-3d-gaussians/

Leonid Keselman and Martial Hebert. 2022. Approximate Differentiable Rendering

with Algebraic Surfaces. In European Conference on Computer Vision (ECCV).
Leonid Keselman and Martial Hebert. 2023. Flexible techniques for differentiable

rendering with 3d gaussians. arXiv preprint arXiv:2308.14737 (2023).

Aaron Knoll, R Keith Morley, Ingo Wald, Nick Leaf, and Peter Messmer. 2019. Efficient

particle volume splatting in a ray tracer. Ray Tracing Gems: High-Quality and
Real-Time Rendering with DXR and Other APIs (2019), 533–541.

Georgios Kopanas, Julien Philip, Thomas Leimkühler, and George Drettakis. 2021.

Point-Based Neural Rendering with Per-View Optimization. Computer Graphics
Forum (Proceedings of the Eurographics Symposium on Rendering) 40, 4 (June 2021).
http://www-sop.inria.fr/reves/Basilic/2021/KPLD21

Christoph Lassner and Michael Zollhöfer. 2021. Pulsar: Efficient Sphere-based Neural

Rendering. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2021), 1440–1449.

Marc Levoy and Pat Hanrahan. 1996. Light Field Rendering. In Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH

’96). Association for Computing Machinery, 31–42.

Moyang Li, Peng Wang, Lingzhe Zhao, Bangyan Liao, and Peidong Liu.

2024b. USB-NeRF: Unrolling Shutter Bundle Adjusted Neural Radiance Fields.

arXiv:2310.02687 [cs.CV]

Max Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H. Taylor, Mathias Unberath,

Ming-Yu Liu, and Chen-Hsuan Lin. 2023. Neuralangelo: High-Fidelity Neural Surface

Reconstruction. In Conference on Computer Vision and Pattern Recognition (CVPR).
Ruilong Li, Sanja Fidler, Angjoo Kanazawa, and Francis Williams. 2024a. NeRF-XL:

Scaling NeRFs with Multiple GPUs. arXiv:2404.16221 [cs.CV]

Zhihao Liang, Qi Zhang, Ying Feng, Ying Shan, and Kui Jia. 2023. Gs-ir: 3d gaussian

splatting for inverse rendering. arXiv preprint arXiv:2311.16473 (2023).
Li Ma, Xiaoyu Li, Jing Liao, Qi Zhang, Xuan Wang, Jue Wang, and Pedro V. Sander.

2021. Deblur-NeRF: Neural Radiance Fields from Blurry Images. arXiv preprint
arXiv:2111.14292 (2021).

Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey

Dosovitskiy, and Daniel Duckworth. 2021. NeRF in the Wild: Neural Radiance Fields

for Unconstrained Photo Collections. In CVPR.
Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-

mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields

for View Synthesis. In ECCV.
Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant

Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans.
Graph. 41, 4, Article 102 (July 2022), 15 pages. https://doi.org/10.1145/3528223.

3530127

Cedrick Münstermann, Stefan Krumpen, Reinhard Klein, and Christoph Peters. 2018.

Moment-Based Order-Independent Transparency. Proc. ACM Comput. Graph. Inter-
act. Tech. 1, 1, Article 7 (jul 2018), 20 pages. https://doi.org/10.1145/3203206

Simon Niedermayr, Josef Stumpfegger, and Rüdiger Westermann. 2023. Com-

pressed 3d gaussian splatting for accelerated novel view synthesis. arXiv preprint
arXiv:2401.02436 (2023).

Michael Niemeyer, Jonathan T. Barron, Ben Mildenhall, Mehdi S. M. Sajjadi, Andreas

Geiger, and Noha Radwan. 2022. RegNeRF: Regularizing Neural Radiance Fields

for View Synthesis from Sparse Inputs. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR).

Michael Niemeyer, Fabian Manhardt, Marie-Julie Rakotosaona, Michael Oechsle, Daniel

Duckworth, Rama Gosula, Keisuke Tateno, John Bates, Dominik Kaeser, and Federico

Tombari. 2024. RadSplat: Radiance Field-Informed Gaussian Splatting for Robust

Real-Time Rendering with 900+ FPS. arXiv preprint arXiv:2403.13806 (2024).
Julian Ost, Issam Laradji, Alejandro Newell, Yuval Bahat, and Felix Heide. 2022. Neural

point light fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 18419–18429.

Panagiotis Papantonakis, Georgios Kopanas, Bernhard Kerbl, Alexandre Lanvin, and

George Drettakis. 2024. Reducing the Memory Footprint of 3D Gaussian Splatting.

In Proceedings of the ACM on Computer Graphics and Interactive Techniques, Vol. 7.
Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock,

David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison,

and Martin Stich. 2010. OptiX: A General Purpose Ray Tracing Engine. ACM Trans.
Graph. 29, 4, Article 66 (jul 2010), 13 pages. https://doi.org/10.1145/1778765.1778803

Hanspeter Pfister, Matthias Zwicker, Jeroen Van Baar, and Markus Gross. 2000. Surfels:

Surface elements as rendering primitives. In Proceedings of the 27th annual conference
on Computer graphics and interactive techniques. 335–342.

Christian Reiser, Stephan Garbin, Pratul P. Srinivasan, Dor Verbin, Richard Szeliski, Ben

Mildenhall, Jonathan T. Barron, Peter Hedman, and Andreas Geiger. 2024. Binary

Opacity Grids: Capturing Fine Geometric Detail for Mesh-Based View Synthesis.

SIGGRAPH (2024).

Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. 2021. KiloNeRF: Speed-

ing up Neural Radiance Fields with Thousands of Tiny MLPs. In International
Conference on Computer Vision (ICCV).

Christian Reiser, Richard Szeliski, Dor Verbin, Pratul P Srinivasan, Ben Mildenhall,

Andreas Geiger, Jonathan T Barron, and Peter Hedman. 2023. Merf: Memory-efficient

radiance fields for real-time view synthesis in unbounded scenes. arXiv preprint
arXiv:2302.12249 (2023).

Konstantinos Rematas, Andrew Liu, Pratul P. Srinivasan, Jonathan T. Barron, Andrea

Tagliasacchi, Thomas Funkhouser, and Vittorio Ferrari. 2022. Urban Radiance Fields.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 12932–12942.

Kerui Ren, Lihan Jiang, Tao Lu, Mulin Yu, Linning Xu, Zhangkai Ni, and Bo Dai.

2024. Octree-GS: Towards Consistent Real-time Rendering with LOD-Structured

3D Gaussians. arXiv preprint arXiv:2403.17898 (2024).
Liu Ren, Hanspeter Pfister, and Matthias Zwicker. 2002. Object space EWA surface

splatting: A hardware accelerated approach to high quality point rendering. In

Computer Graphics Forum, Vol. 21. Wiley Online Library, 461–470.

Gernot Riegler and Vladlen Koltun. 2020. Free View Synthesis. In European Conference
on Computer Vision.

Gernot Riegler and Vladlen Koltun. 2021. Stable View Synthesis. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition.

https://doi.org/10.2312/vmv.20201183
http://jcgt.org/published/0009/04/01/
http://jcgt.org/published/0009/04/01/
https://arxiv.org/abs/2312.07541
https://arxiv.org/abs/2311.17245
https://doi.org/10.1145/1276377.1276466
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/hierarchical-3d-gaussians/
http://www-sop.inria.fr/reves/Basilic/2021/KPLD21
https://arxiv.org/abs/2310.02687
https://arxiv.org/abs/2404.16221
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3203206
https://doi.org/10.1145/1778765.1778803


3D Gaussian Ray Tracing: Fast Tracing of Particle Scenes • 232:17

Darius Rückert, Linus Franke, and Marc Stamminger. 2022. Adop: Approximate dif-

ferentiable one-pixel point rendering. ACM Transactions on Graphics (ToG) 41, 4
(2022), 1–14.

Marco Salvi and Karthikeyan Vaidyanathan. 2014. Multi-layer alpha blending. Pro-
ceedings of the 18th meeting of the ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games (2014). https://api.semanticscholar.org/CorpusID:18595625

Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and

Angjoo Kanazawa. 2022. Plenoxels: Radiance Fields without Neural Networks. In

CVPR.
Johannes Lutz Schönberger and Jan-Michael Frahm. 2016. Structure-from-Motion

Revisited. In Conference on Computer Vision and Pattern Recognition (CVPR).
Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm.

2016. Pixelwise View Selection for Unstructured Multi-View Stereo. In European
Conference on Computer Vision (ECCV).

Otto Seiskari, Jerry Ylilammi, Valtteri Kaatrasalo, Pekka Rantalankila, Matias Turku-

lainen, Juho Kannala, Esa Rahtu, and Arno Solin. 2024. Gaussian Splatting on the

Move: Blur and Rolling Shutter Compensation for Natural Camera Motion. arXiv
preprint arXiv:2403.13327 (2024).

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik,

Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay Vasudevan,Wei

Han, Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott Ettinger, Maxim Krivokon,

Amy Gao, Aditya Joshi, Yu Zhang, Jonathon Shlens, Zhifeng Chen, and Dragomir

Anguelov. 2020. Scalability in Perception for Autonomous Driving: Waymo Open

Dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

Haithem Turki, Deva Ramanan, and Mahadev Satyanarayanan. 2022. Mega-NERF:

Scalable Construction of Large-Scale NeRFs for Virtual Fly-Throughs. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
12922–12931.

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping

Wang. 2021. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for

Multi-view Reconstruction. NeurIPS (2021).
ZianWang, Tianchang Shen, JunGao, ShengyuHuang, JacobMunkberg, JonHasselgren,

Zan Gojcic, Wenzheng Chen, and Sanja Fidler. 2023a. Neural Fields meet Explicit

Geometric Representations for Inverse Rendering of Urban Scenes. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Zian Wang, Tianchang Shen, Merlin Nimier-David, Nicholas Sharp, Jun Gao, Alexander

Keller, Sanja Fidler, Thomas Müller, and Zan Gojcic. 2023b. Adaptive Shells for

Efficient Neural Radiance Field Rendering. ACM Trans. Graph. 42, 6, Article 259
(2023), 15 pages. https://doi.org/10.1145/3618390

Turner Whitted. 1979. An improved illumination model for shaded display. Seminal
graphics: pioneering efforts that shaped the field (1979). https://api.semanticscholar.

org/CorpusID:9524504

Daniel N. Wood, Daniel I. Azuma, Ken Aldinger, Brian Curless, Tom Duchamp, David H.

Salesin, and Werner Stuetzle. 2000. Surface Light Fields for 3D Photography. In

Proceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’00). ACM Press/Addison-Wesley Publishing Co., 287–296.

Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli, and

Ulrich Neumann. 2022. Point-nerf: Point-based neural radiance fields. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 5438–5448.

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. 2021. Volume rendering of

neural implicit surfaces. In Thirty-Fifth Conference on Neural Information Processing
Systems.

Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross. 2001. Surface

splatting. In Proceedings of the 28th annual conference on Computer graphics and
interactive techniques. 371–378.

Tianyi “Tanki” Zhang. 2021. Handling Translucency with Real-Time Ray Tracing. Ray
Tracing Gems II: Next Generation Real-Time Rendering with DXR, Vulkan, and OptiX
(2021), 127–138.

https://api.semanticscholar.org/CorpusID:18595625
https://doi.org/10.1145/3618390
https://api.semanticscholar.org/CorpusID:9524504
https://api.semanticscholar.org/CorpusID:9524504


232:18 • Moenne-Loccoz, Mirzaei et al.

A IMPLEMENTATION AND TRAINING DETAILS
We wrap the NVIDIA OptiX tracer as a Pytorch extension and train

our representation using Adam optimizer for 30,000 iterations. We

set the learning rates for rotations, scales, and zeroth-order spherical

harmonics to 0.001, 0.005, and 0.0025, respectively. The learning

rate for the remaining spherical harmonics coefficients is 20 times

smaller than for the zeroth-order coefficient. Finally, we set the

density learning rate to either 0.05 for high-quality settings or 0.09

for fast-inference settings.

After initial 500 iterations, we start the densification and pruning

process, which we perform until 15,000 iterations are reached. To

densify the particles, we accumulate 3D positional gradients, scaled

by half the distance of each particle to the camera, to prevent under-

densification in distant regions. In line with 3DGS [Kerbl et al. 2023],

we split the particles if their maximum scale is above 1% of the scene

extent and clone them otherwise. Pruning directly removes particles

whose opacity is below 0.01. Additionally, we employ a simple

heuristic to cap the maximum number of particles to 3,000,000. We

denote this pruning strategy as visibility pruning. Specifically, if the
densification step results in more particles, we reduce their number

to 2,700,000 by pruning particles with minimum accumulated weight

contribution on the training views. Moreover, while densification

and pruning are in effect and similar to 3DGS, we reset the particle

densities to 0.01 every 3000 iterations. During training, we perform

early stopping to terminate the tracing of rays whose accumulated

transmittance falls below 0.001. During inference, we increase this

threshold to 0.03 for improved efficiency.We begin by solely training

the constant spherical harmonic and progressively increase the

spherical harmonics’ degree every 1000 iterations, up to a maximum

of 3. We update the BVH every iteration and reconstruct it after

each pruning and densification.

For experiments with random-rays, during the last 15,000 itera-

tions, we sample random rays across all training views with a batch

size of 2
19 = 524,288, and only use the 𝐿1 loss to supervise the

particles.

A.1 Autonomous Vehicles
To fit autonomous vehicle scenes, we modify our training protocol,

including incorporating lidar and depth supervision. To initialize,

we randomly sample 1 million lidar points visible in at least one

training image. These points are assigned an initial color via lookup

projected into a training image, and assigned an initial scale based

on the distance to the closest recorded camera pose. During training,

we use lidar to supervise depth; in our ray tracer depth is computed

by integrating the distance along the ray to each sample as if it were

radiance. Note that in 3DGS, lidar depth must be approximated by

projecting lidar rays onto camera images, yet in ray tracing lidar

rays can be directly cast into the scene. Additionally, we reconstruct

the sky following [Rematas et al. 2022] and employ a directional

MLP which predicts the color of the sky based on the ray direction.

A sky segmentation is included as input, and used to supervise ray

opacities computed from the particle scene.

Table 5. Quantitative evaluation on the NeRF Synthetic dataset [Milden-
hall et al. 2020]

NeRF Synthetic
Method Chair Drum Ficus Hotdog Lego Materials Mic Ship Mean

NeRF 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65 31.10

MipNeRF 35.14 25.48 33.29 37.48 35.70 30.71 36.51 30.41 33.09

INGP 35.00 26.02 33.51 37.40 36.39 29.78 36.22 31.10 33.18

AdaptiveShells 34.94 25.19 33.63 36.21 33.49 27.82 33.91 29.54 31.84

3DGS (paper) 35.83 26.15 34.87 37.72 35.78 30.00 35.36 30.80 33.32

Ours (reference) 35.90 25.77 35.94 37.51 36.01 29.95 35.66 30.71 33.48

Ours 36.02 25.89 36.08 37.63 36.20 30.17 34.27 30.77 33.38

Table 6. Quantitative PSNR ablation on the maximum number of allowed
particles using ours.

Maximum Allowed Particles
Dataset 1 × 106 2 × 106 3 × 106 4 × 106 5 × 106 6 × 106

Tanks & Temples 23.21 23.19 23.20 23.14 23.15 23.20

Deep Blending 29.24 29.17 29.23 29.14 29.24 29.15

B ADDITIONAL EXPERIMENTS AND ABLATIONS
Figure 18 shows qualitative comparisons of our method against

MIPNeRF360 [Barron et al. 2022]. The zoomed-in insets demonstrate

that both of our settings achieve comparable or better renderings

with sharp features. The first three rows contain scenes from the

MipNeRF360 dataset, while the last two rows feature scenes from

Tanks & Temples.
As mentioned in Section A, we propose a simple visibility prun-

ing strategy to prevent the number of particles from exceeding a

certain threshold. Table 6 presents an ablation study on the maxi-

mum number of allowed particles for scenes in two datasets: Tanks
& Temples and Deep Blending. When densification causes the

number of particles in the scene to exceed the threshold, we prune

the least visible particles based on their accumulated contribution

to the training views, reducing the number of particles to 90% of

the threshold. The results show that our visibility pruning strategy,

which filters out particles that contribute the least to the rendered

views, maintains quality even with as few as one million particles.
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MIPNeRF360 Ours (reference)Ground Truth Ours

Fig. 18. AdditionalQualitative Comparisons: novel-view synthesis results relative to the MIPNeRF360 baseline (insets (•) show per-result closeups).
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