
Spelunking the Deep: GuaranteedQueries on
General Neural Implicit Surfaces via Range Analysis
NICHOLAS SHARP, University of Toronto, Canada
ALEC JACOBSON, University of Toronto, Adobe Research, Canada

Neural implicit representations, which encode a surface as the level set of a

neural network applied to spatial coordinates, have proven to be remark-

ably effective for optimizing, compressing, and generating 3D geometry.

Although these representations are easy to fit, it is not clear how to best

evaluate geometric queries on the shape, such as intersecting against a ray

or finding a closest point. The predominant approach is to encourage the

network to have a signed distance property. However, this property typically

holds only approximately, leading to robustness issues, and holds only at the

conclusion of training, inhibiting the use of queries in loss functions. Instead,

this work presents a new approach to perform queries directly on general
neural implicit functions for a wide range of existing architectures. Our key

tool is the application of range analysis to neural networks, using automatic

arithmetic rules to bound the output of a network over a region; we conduct

a study of range analysis on neural networks, and identify variants of affine

arithmetic which are highly effective. We use the resulting bounds to develop

geometric queries including ray casting, intersection testing, constructing

spatial hierarchies, fast mesh extraction, closest-point evaluation, evaluating

bulk properties, and more. Our queries can be efficiently evaluated on GPUs,

and offer concrete accuracy guarantees even on randomly-initialized net-

works, enabling their use in training objectives and beyond. We also show a

preliminary application to inverse rendering.

CCS Concepts: • Computing methodologies→ Shape analysis; Shape
representations; • Mathematics of computing→ Interval arithmetic.

Additional Key Words and Phrases: implicit surfaces, neural networks, range

analysis, geometry processing

1 INTRODUCTION
Representing shapes presents a fundamental dilemma across visual

and scientific computing: point clouds and voxel grids are easy

to process efficiently, but lack explicit connectivity information;

meshes offer a concise and precise description of a surface, but may

require difficult unstructured computation, etc. Recently, neural im-

plicit representations have emerged as a promising alternative for

a variety of important tasks—the basic idea is to encode a surface

as a level set of a neural network applied to spatial coordinates.

These neural implicit surfaces inherit many of the strengths which

have made neural networks ubiquitous across visual computing,

including effective gradient-based optimization, integration with

data-driven priors and objectives, and straightforward paralleliza-

tion on modern hardware.

However, there is a price to pay in return for these strong prop-

erties: there is no clear strategy for evaluating even the most basic

geometric queries against a neural implicit surface, such as inter-

secting a ray with the surface, or finding a closest point. It would

Authors’ addresses: Nicholas Sharp, University of Toronto, Canada, nsharp@cs.toronto.

edu; Alec Jacobson, University of Toronto, Adobe Research, Canada, jacobson@cs.

toronto.edu.

closest point
queries

hierarchical
mesh
extraction

ray
casting

intersection tests

Fig. 1. Our method enables geometric queries on neural implicit surfaces,
without relying on fitting a signed distance function. Several queries are
shown here on a neural implicit occupancy function encoding a mine cart.
These operations open up new explorations of deep implicit surfaces.

seem that the only thing we can do with such a function is to sample

it at a point. In a sense, the powerful generality of neural networks

is exactly what makes them difficult to query—because they can

approximate arbitrary functions with adaptive spatial resolution, it

is very difficult to characterize the geometry of their level sets.

One popular recourse is to attempt to fit implicit functions which

not only encode a surface via their zero level set, but furthermore

have a signed-distance function (SDF) property away from the level

set: the magnitude of the function gives the distance to the surface.

Although exact SDFs are well-suited for many queries in geometry

processing, approximate neural SDFs leave much to be desired. First,

such networks are only approximately SDFs, and may overestimate

the distance to the surface, causing queries to fail unpredictably.

More importantly, the SDF property only applies after a network
has been successfully fitted; thus we cannot make use of geometric

queries in the early stages of training, e.g., to define geometric

loss functions. Even more broadly, relaxing the expectation that a

network fits an SDF opens up a broader class of neural network

formulations and objectives, such as those based on occupancy (e.g.,
as in Section 5).

107:2 • Sharp and Jacobson

Thiswork develops and studies a technique for performing queries

on general neural implicit surfaces—including not only SDFs, but

also other functions which lack any special properties away from

the zero level set. Importantly, we do not define any new architec-

tures or loss functions, but rather show how to perform queries on

a broad class of existing networks, making our method immediately

compatible with a wide range of past and future work on neural

implicit formulations. The result is a collection of subroutines for

performing geometric queries on neural implicit surfaces, resolving

a key weakness of the formulation and enabling promising new

avenues of research.

To enable these queries, we leverage range analysis, a class of

automatic arithmetic techniques for computing bounds on the range

of a function over a specified input domain. These techniques were

first popularized to bound the error incurred by floating point arith-

metic, but can be applied more generally over any domain. However,

there exists a wide variety of range analysis methods, and these

have not been previously studied in the context of neural implicit

shapes. In fact, we observe that many of these variants are entirely

ineffective in this context, and a key component of this work is an

investigation and empirical benchmark to identify range analysis

schemes which are both efficient and effective for general neural

implicit surface queries (Section 3).

With range analysis of neural networks in hand as our primary

tool, we develop a suite of geometric queries including ray cast-

ing, empty sphere queries, fast hierarchical surface sampling and

mesh extraction, closest point queries, intersection tests, and more

(Section 4). Many of these queries were not previously possible

on general neural implicit surfaces, or could be evaluated only by

dense brute-force sampling. Our queries are guaranteed in the sense

that they have bounded error with respect to the implicit surface

regardless of the nature of the underlying neural network, i.e. they
apply even on a randomly initialized networks. We demonstrate the

potential of these queries applied to a wide variety of problems in

computer graphics, vision, and simulation.

QSlim mesh
7554 floats

neural implicit
7553 floats

latent interpolation

latent

compression

full-resolution mesh
150k floats

Fig. 2. Neural implicit surface representations offer a variety of exciting
properties, including efficient compression via gradient-based optimization
(left), and interpolation through latent parameter spaces (right). Both exam-
ples are rendered in our ray casting framework.

2 BACKGROUND AND RELATED WORK
The general literature on neural fields has rapidly exploded beyond

the scope of this section, we point to the thorough survey of Xie

et al. [2022] as a general introduction. In this work, we particularly

consider queries on implicit solid surfaces, as opposed to volumet-

ric, partial occupancy, or participating media queries. In particular,

casting rays against solid surfaces has been very widely studied in

computer graphics, and will serve as a proxy for many concerns

that arise in the other queries we consider.

Neural Implicit Surfaces. Neural implicit surfaces define the bound-

ary S of a solid 3D shape as the zero level set of a Multi-Layer

Perceptron (MLP) with internal parameters 𝜃 . The function 𝑓𝜃 takes

as input a 3D position 𝑥 ∈ R3, and possibly additional latent inputs,

and outputs a scalar value:

S :=
{
𝑥 ∈ R3 | 𝑓𝜃 (𝑥) = 0

}
. (1)

Neural implicit surfaces are immediately attractive because the sign
of their forward evaluation classifies 𝑥 as inside or outside the solid

bounded by S, typically assumed negative inside by convention.

Networks which instead model an occupancy or density (e.g., [Chen

and Zhang 2019; Mescheder et al. 2019]), such as the geometric

component of recently-popular NeRFmodels [Mildenhall et al. 2020],

can be viewed as an implicit surface by selecting an appropriate level

set; this connection was explored Yariv et al. [2021]. More broadly,

neural implicit surfaces are a special case of the larger family of

implicit surfaces defined by any arbitrary function 𝑓 (𝑥), which
have a vast history in computer graphics (see, e.g., [Bloomenthal

et al. 1997; Menon 1996]). Classic implicit surfaces are constructed

via trees of constructive solid geometry operations with analytic

functions at leaf nodes (planes, spheres, cones, etc.) [Ricci 1973], or
by crafting smooth blending operations on radial basis functions

(e.g., metaballs, blobs) [Blinn 1982; Wyvill et al. 1986].

signed distance
function

occupancy
function logits

-200

+200+1

-1

Fig. 3. Neural implicit functions may fit a metric signed distance function
(left), merely classify as an occupancy function (right), or use other formula-
tions. The queries developed in this work apply in all cases. For occupancy,
we plot the “logits” 𝑦 such that tanh(𝑦) gives occupancy.

Spelunking the Deep: GuaranteedQueries on General Neural Implicit Surfaces via Range Analysis • 107:3

Signed Distance Functions. An important special case of implicit

surfaces are signed distance functions (SDFs), which add the require-

ment that the magnitude |SDF(𝑥) | is the distance to the closest point
on the levelset S. The SDF property implies that no point on the

surface is within a distance |𝑆𝐷𝐹 (𝑥) | in any direction. This obser-

vation forms the essence of the sphere tracing algorithm (Figure 4)

for rendering implicit surfaces by casting rays [Bálint and Valasek

2018; Hart 1996; Keinert et al. 2013; Reiner et al. 2011].

Often, a function need not satisfy the SDF property exactly, but

merely be a weak SDF, such that |𝑓 (𝑥) | < |𝑆𝐷𝐹 (𝑥) |. A weak SDF

still guarantees that no point on the surface is within a distance

|𝑓 (𝑥) |, which is sufficient for algorithms like sphere tracing to be

correct, though they must take smaller steps. Any smooth, bounded

implicit function can be transformed to a weak SDF after scaling by

its Lipschitz constant 𝐿, though this is not necessarily productive

in practice (see Section 4.11). Representing arbitrary surfaces with

exact SDFs is often difficult or unwieldy, but weak SDFs have been

constructed to model fascinatingly complex surfaces (e.g. by Quilez

[2008]). Space-warped SDFs may no longer maintain a tight SDF,

but Seyb et al. [2019] show that the inverse-warp function can afford

sphere-tracing along curved rays in the unwarped domain.

Stated in the language of MLPs, if 𝑓𝜃 is an SDF, or some appro-

priate Lipschitz constant 𝐿 is known a priori, then a single forward

evaluation would simultaneously reveal the implicit’s value at the

current point along a ray and the safe stepping distance along a cast

ray (see Figure 4). However, a generic neural implicit 𝑓𝜃 will not

automatically encode an SDF, nor have a known or small Lipschitz

constant 𝐿. The most widespread remedy in practice is to supervise

training of the neural implicit function with precomputed SDF sam-

ples from known shapes. If a network is well-trained to fit an SDF

[Davies et al. 2020; Park et al. 2019], then sphere-tracing and other

queries may be applied, though still with some risk of overzealous

step scaling resulting in missed ray hits.

Another approach is by changing an MLP architecture to have a

determinable global Lipschitz constant [Yariv et al. 2021]. However,

this may degrade surface fidelity, and moreover the global constant

may be very high despite being small in a region of interest (e.g.,
near S). Computing precise local Lipschitz constants for common

MLP architectures is NP-Hard [Jordan and Dimakis 2020; Virmaux

and Scaman 2018].

Yet another route is to incorporate loss functions encouraging

Eikonality ∥∇MLP𝜃 ∥ ≈ 1 [Atzmon and Lipman 2020a,b; Davies et al.

2020; Gropp et al. 2020] or bounded Lipschitz constant [Elsner et al.

2021]. This approachmay also effect surface fidelity and—even if suc-

cessful—may only be true when training has completed, precluding

safe sphere-tracing type queries during training.

Querying General Implicit Surfaces. What if we do not want to

change the architecture of our MLP, or its training loss, to accommo-

date queries? What if we are handed an MLP which is not SDF-like?

For ray-casting, we could march with very small fixed steps [Perlin

and Hoffert 1989], but small steps are excessively expensive while

large steps will cause rays to erroneously miss the surface (Figure 6).

We could contour the level set to a triangle mesh [Genova et al. 2020;

Park et al. 2019] via a method such as marching cubes [Lorensen

general interval tracingSDF sphere tracing

Fig. 4. Sphere tracing finds the intersection of a ray with a shape by using
a distance function to step forward (left). When a distance function is not
available, but we can instead verify that intervals do not overlap the surface,
interval tracing serves the same purpose (right).

and Cline 1987], but this introduces discretization error and alias-

ing, and also complicates differentiability [Liao et al. 2018; Remelli

et al. 2020]. For ReLU activations, the level-set will be polyhedral

and could be theoretically triangulated exactly, at significant cost

[Lei and Jia 2020]. Even beyond ray-casting, we would seek many

geometric queries to support the burgeoning geometry processing

of neural implicit surfaces [Yang et al. 2021; Yifan et al. 2022].

Instead, we look beyond the neural world toward past efforts

of ray casting with a larger class of arbitrary implicit functions. A

major theme of these works—dating at least to Duff [1992]—is to

apply interval arithmetic or more generally range analysis with its

numerous variants [Rump and Kashiwagi 2015]. Interval arithmetic

is a code transformation technique to compute strict upper and lower

bounds for a composition of simple functions (see, e.g., [Alefeld and

Mayer 2000; Moore et al. 2009; Stolfi and De Figueiredo 1997] and

our more detailed discussion in Section 3).

Applied to ray casting, range analysis can be employed to safely in-

crease or decrease the step size of a ray or bundle of rays [De Cusatis

et al. 1999; Fryazinov et al. 2010; Galin et al. 2020; Gamito and Mad-

dock 2007; Heidrich and Seidel 1998; Heidrich et al. 1998; Keeter

2020; Knoll et al. 2007, 2009; Mitchell 1990; Thonat et al. 2021], or for

other queries, such as finding closest points [Chan 2008]. Despite

this recurring interest, range analysis has not yet been studied in

the context of neural implicits to the best of our knowledge. In this

paper, we demonstrate that carefully-selected variants of range anal-

ysis offer a highly effective strategy for analyzing general neural

implicit surfaces, and show how a wide variety of geometric queries

can be built upon it.

3 RANGE ANALYSIS OF NEURAL IMPLICIT SHAPES
Wepropose to apply range analysis to neural implicit shape functions—

these techniques take bounds on the input to a function, then apply

automatic arithmetic rules to propagate bounds for each intermedi-

ate operation in a computation, and ultimately produce a bound on

the function output [Stolfi and De Figueiredo 1997]. In our setting,

range analysis can concretely bound the implicit function away

from 0 in a region, classifying the region as strictly inside or outside

the shape. This will be our foothold from which to build higher-level

geometric queries (Section 4).

Range analysis has been widely studied within numerical com-

puting, and particularly in the context of computer graphics (see

Section 2). In the neural network literature, it has been leveraged

107:4 • Sharp and Jacobson

for robustness and verification [Adam et al. 2016; Betancourt and

Muhanna 2021; Dai et al. 2021; Gowal et al. 2018; Mirman et al.

2021; Sahoo et al. 2015], and even in the 3D setting by Proszewska

et al. [2021], albeit in a voxel context. However, the combination of

these lines of research has not previously been realized by applying

range analysis to neural implicit surfaces—we find this application

to be very fruitful, but not without challenges. For example, we

observe that interval arithmetic, the most basic and common range

analysis, is largely ineffective when applied to our neural implicit

surfaces. For this reason, in this section we review core ideas in

several forms of range analysis, and discuss particular issues which

arise in application to MLPs, as well as performing an empirical

study. Ultimately, in Section 3.4 we give concrete recommendations

for variants of affine arithmetic which are highly effective for range

analysis of neural implicit surfaces.

3.1 Interval Arithmetic
Interval arithmetic [Young 1931] is a technique for automatically

computing bounds on the value of a function over a domain. The

basic idea is to replace each scalar quantity 𝑥 in a computation with

a pair of bounds [𝑥−, 𝑥+]. Given bounds on the input 𝑥 to a func-

tion 𝑦 = 𝑓 (𝑥), arithmetic rules are applied to propagate the bounds

forward through each elementary operation, eventually yielding

bounds on the output [𝑦−, 𝑦+] such that 𝑓 (𝑥) ∈ [𝑦−, 𝑦+] ∀𝑥 ∈
[𝑥−, 𝑥+]. For example, elementary rules for addition, scalar multi-

plication, and the exponential are given by

[𝑥−, 𝑥+] + [𝑦−, 𝑦+] = [𝑥− + 𝑦−, 𝑥+ + 𝑦+]
𝑎[𝑥−, 𝑥+] = [min(𝑎𝑥−, 𝑎𝑥+),max(𝑎𝑥−, 𝑎𝑥+)]

exp([𝑥−, 𝑥+]) = [exp(𝑥−), exp(𝑥+)] .
In general, these rules can derived as needed, or looked up in a stan-

dard reference (e.g. [Stolfi and De Figueiredo 1997]). This technique

extends directly to vector-valued quantities by tracking intervals for

each component, and there are no restrictions on e.g. the smoothness

of 𝑓 , so long as interval bounds can be derived for each constitutive

operation.

These interval arithmetic rules already allow us to compute

bounds on the output of an MLP. However, it turns out that in-

terval arithmetic alone is not a practical tool in our setting.

The Dependency Problem. The main downside of interval arith-

metic is that the computed bounds may be extremely pessimistic.

As an example, consider the simple operation 𝑦 ← 2𝑥 −𝑥 , evaluated
on the range 𝑥 ∈ [−1, 1]. Clearly the actual bound on 𝑦 is [−1, 1],
but applying the rules above yields a looser bound of [−1, 2] even
in this simple example. This issue is that the same interval-bounded

quantity appears multiple times in the expression, and should can-

cel out, but the rules naively treat all interval quantities as being

distinct. In fact, the tightness of the bounds even depends on how

the function is written algebraically—an unfortunate property in

contrast to other automatic transformations such as automatic dif-

ferentiation. This effect is particularly problematic in MLPs, where

linear layers 𝑦 ← 𝐴𝑥 involve a great deal of cancellation which is

not captured by basic interval arithmetic, leading to extremely pes-

simistic bounds. For this reason, we turn to an extension of interval

arithmetic which tracks additional data to compute tighter bounds.

interval arithmetic a�ine arithmetic

Fig. 5. Affine arithmetic models the correlation between quantities to
achieve much tighter bounds than interval arithmetic.

3.2 Affine Arithmetic
Affine arithmetic [Comba and Stolfi 1993] generalizes interval arith-

metic by tracking a collection of affine symbols, and offers the ad-

vantageous property that bounds are preserved exactly under affine

operations. In affine arithmetic, each scalar value 𝑥 is expanded to a

base 𝑥0 and a collection of affine coefficients {𝑥1, ..., 𝑥𝑁 }

x̂ = 𝑥0 +
𝑁∑︁
𝑖=1

𝑥𝑖𝜀𝑖 , 𝜀𝑖 ∈ [−1, 1] (2)

where each 𝜀𝑖 is a “noise symbol” representing some variation or

uncertainty in the value of x̂. Crucially, this representation distin-

guishes distinct sources of variation: if x̂ and ŷ both vary due to some

𝜀𝑖 , we know that that these are the same, correlated uncertainties,

and can e.g. allow them to cancel when subtracting 𝑥 − 𝑦.
Notice that for any uncertain quantity represented in affine form,

we can easily read off bounds on the value of that quantity as

range(x̂) = [𝑥0 − 𝑟, 𝑥0 + 𝑟], 𝑟 =

𝑁∑︁
𝑖=1

|𝑥𝑖 |. (3)

Much like interval bounds, affine bounds can be propagated by

automatic rules as a computation proceeds. For instance, addition

amounts to simply summing the base and coefficients

x̂ + ŷ = 𝑥0 +
𝑁∑︁
𝑖=1

𝑥𝑖𝜀𝑖 + 𝑦0 +
𝑁∑︁
𝑖=1

𝑦𝑖𝜀𝑖 = (𝑥0 + 𝑦0) +
𝑁∑︁
𝑖=1

(𝑥𝑖 + 𝑦𝑖)𝜀𝑖

and likewise multiplication by a constant 𝑎 is given by

𝑎x̂ = 𝑎𝑥0 +
𝑁∑︁
𝑖=1

𝑎𝑥𝑖𝜀𝑖 .

Both operations are exact; they do not introduce new uncertainty.

For nonlinear functions ŷ← 𝑓 (x̂) such as exp, tanh, etc., there is
a straightforward recipe to propagate affine bounds by leveraging

a linear approximation 𝑓 (𝑥) ≈ 𝑓 (𝑥) := 𝛼𝑥+𝛽 on range(x̂). Letting𝛾
be themaximum error of this approximation𝛾 = max𝑥 ∈range(x̂) |𝑓 (𝑥)−
𝑓 (𝑥) |, then affine bounds can be propagated through 𝑓 according to

ŷ = 𝑓 (x̂) = 𝑓 (x̂) = 𝛼𝑥0 + 𝛽 +
𝑁∑︁
𝑖=1

𝛼𝑥𝑖𝜀𝑖 + 𝛾𝜀𝑁+1, (4)

where 𝜀𝑁+1 introduces𝛾 as a new, additional affine coefficient which

models the nonlinear variation of 𝑓 (𝑥) and is carried forward in

subsequent computation. For a particular nonlinear 𝑓 (𝑥), we must

Spelunking the Deep: GuaranteedQueries on General Neural Implicit Surfaces via Range Analysis • 107:5

Table 1. We investigate several variants of range analysis for neural implicit surfaces, measuring the computation time relative to an ordinary scalar evaluation
of the network (time, lower is better), and the tightness of the bounds via the typical size of a region which can be bounded away from the zero by the analysis
(length/volume, higher is better). Both factors affect the efficiency of queries, exemplified via the time to cast rays, normalized by the fastest method (raycast,
lower is better). The last column summarizes recommendations from our study. See Appendix B for additional details.

analyze 1d region analyze 3d region raycast
Variant time ↓ length ↑ time ↓ volume ↑ time ↓ Comments

interval 2.4× 0.011 2.3× < 0.001×10−3 34.3× ⊲not effective, bounds too pessimistic
affine (full) 95.3× 0.821 96.4× 3.499×10−3 8.4× ⊲best for most volumetric queries on most networks

affine (fixed) 4.7× 0.306 6.7× 0.267×10−3 1.0× ⊲best for ray casting on most networks
affine (truncate) 70.9× 0.513 69.0× 0.906×10−3 9.7× ⊲best scaling to very large networks
affine (append) 29.3× 0.351 31.0× 0.664×10−3 58.3× ⊲no advantage vs. fixed/full
slope interval 3.8× 0.165 8.6× 0.042×10−3 2.2× ⊲no advantage vs. affine

then define 𝛼, 𝛽,𝛾 for any input domain range(x̂). This approxima-

tion can be manually derived as needed, or looked up in a standard

reference (e.g. [Stolfi and De Figueiredo 1997]). Appendix A gives

formulae for 𝛼 ,𝛽 ,𝛾 for common activation functions, and further-

more explicitly defines all affine arithmetic rules used in this work.

Here, we consider only MLP-like neural network computations,

and thus sidestep difficult operations in fully-general affine arith-

metic implementations, such as multiplication between two affine

terms [Rump 1999].

3.3 Reduced Affine Arithmetic
In full affine arithmetic, each nonlinear operation introduces a new

affine coefficient (Equation 4), gradually increasing computational

cost. In our setting, each network layer of width𝑊 would add𝑊 new

coefficients due to nonlinearities, which must then be propagated

forward. In an 8-layer 32-width network, this means that before the

final dense layer what is normally a R32 vector will be replaced with
a collection of 224 R32 vectors encoding affine coefficients, each of

which must be propagated via matrix multiplication, resulting in

more than a 200× increase in computation. Although this cost may

be worthwhile, it is pragmatic to consider alternatives.

Rather than retaining all affine coefficients, one can periodically

reduce, or “condense” to some smaller set of coefficients, decreasing

computational cost at the expense of potentially missing opportuni-

ties for cancellation [Stolfi and De Figueiredo 1997, §3.18.1], [Gamito

and Maddock 2007]. Concretely, condensation replaces some set

of affine coefficients at indices D = {𝑖0, ...𝑖𝑁 } with a single new

coefficient holding the sum of their magnitudes

condense(x̂,D) = 𝑥0 +
∑︁
𝑖∉D

𝑥𝑖𝜀𝑖 +
(∑︁
𝑖∈D
|𝑥𝑖 |

)
𝜀𝑁+1 . (5)

One still must decide when to condense, and which coefficients to

keep. We consider four policies:

• affine-full: no condensation, retain all affine terms

• affine-fixed: retain only affine terms from the original

input domain; immediately condense all others

• affine-truncate: retain the𝑛
keep

largest-magnitude terms

• affine-append: after each nonlinearity, append the 𝑛
append

largest-magnitude new affine terms and condense the rest

In all cases we must also retain one additional affine term to hold

the condensed value. The tradeoffs between these strategies are not

clear a priori, motivating an empirical approach (Section 3.4).

3.4 Selecting a Range Analysis Strategy
The extensive literature on automatic arithmetic for range analysis

leads to many variants which could compute bounds on neural

implicit functions. However, these approaches vary drastically in

their computational cost, and the tightness of the resulting bounds.

Performance. Analyzing neural networks goes hand-in-hand with
vectorized, GPU-based computation, and the performance trade offs

therein. For instance, vectorization implies maintaining the same

set of affine terms for all quantities, precluding sparse representa-

tions with different terms for each. Additionally, from the outset

we consider only methods for which range analysis matrix multi-

plication can be implemented as a sequence of ordinary fast matrix

multiplication primitives, which are crucial for performance. Like-

wise, large amounts of dense arithmetic (e.g. in affine-full) may

be surprisingly performant compared to sorting and irregular data

access (e.g. in affine-truncate).

Correctness. We emphasize that all considered variants of range

analysis always yield correct bounds, in the sense the output of

the function on the interval is necessarily contained within the

computed bounds. Even floating-point inaccuracy can be addressed

via careful control of rounding modes [Stolfi and De Figueiredo

1997], although we do not find it necessary in this work. However,

although these bounds are always correct, they are not necessarily

tight, and some variants of range analysis discussed above yield

dramatically tighter bounds than others. The tightness of the bounds

in-turn affects the efficiency of downstream algorithms.

Empirical Study. We conduct an empirical study to analyze the

trade offs of range analysis techniques for neural implicit surfaces,

which is to our knowledge the first in the context of neural net-

works. We construct a dataset of neural implicit shapes fit via a

variety of strategies, and for each we measure the tightness of the

resulting bounds, as well as the added computational burden of

range arithmetic—details are in Appendix B. We consider ordinary

interval arithmetic (Section 3.1), several variants of affine arithmetic

107:6 • Sharp and Jacobson

(Sections 3.2 and 3.3), and also a slope-interval form akin to the

method of Ratz [1996], which combines interval arithmetic and au-

tomatic differentiation to bound derivatives. See Table 1 for results.

Interval arithmetic is the least expensive, but yields extremely pes-

simistic bounds, and the slope-interval method offers little beyond

affine arithmetic. The full, fixed, and truncate variants of affine

arithmetic all have advantages, depending on the context.

Recommendations. We always recommend the use of affine arith-

metic as opposed to interval or other arithmetics.With this approach,

a single implementation can easily adjust the truncation policy based

on the task at hand. For 1d ray casting queries, affine-fixed arith-
metic offers the best performance, due to its low cost. For spatial

3d queries, we find that surprisingly affine-full arithmetic is

generally the most effective—although it performs a great deal of

arithmetic, the tight bounds enable queries to explore amuch smaller

region of space. Lastly, for large networks (e.g. those with > 1000

total scalar nonlinearities), affine-truncate may be a valuable al-

ternative to avoid the scaling issues of full affine arithmetic, though

sorting affine terms for truncation incurs significant overhead. We

use affine-fixed for all ray casting queries and affine-full for

volumetric queries, unless otherwise noted.

3.5 Applying Range Analysis
We have now identified variants of affine arithmetic which are well-

suited to computing range bounds on neural implicit functions,

providing a foothold to design geometric queries. To be clear, we do

not propose any new network architecture or training objectives,

but instead enable these queries directly on a wide range of existing

architectures. The class of networks to which our method applies

includes MLPs, and is trivially extended to other common archi-

tecture components such as residual connections or latent inputs.

In principle, it can be applied to any layer operation for which an

affine bound can be derived.

We will abstract over the use of range

analysis via a function RangeBound, which

takes as input an 𝑠-dimensional query box

(which need not be axis-aligned), and clas-

sifies the value of the neural function as

POSITIVE, NEGATIVE, or UNKNOWN within

the box. For instance, ray casting requires

bounds along a 1d box which is not axis-

aligned, while spatial queries decompose space into axis-aligned 3d

boxes. Because the bounds from range analysis are not necessarily

tight, RangeBound may report UNKNOWN over large queries, even if

the function truly is bounded away from 0; this can be resolved by

subdividing and repeating the query over multiple smaller ranges.

This formulation is not limited to spatial coordinates; it applies

to any network input such as latent parameters of a network, and

the queries derived herein still apply with only small modifications.

Any network inputs for which we are not computing bounds are

assigned the constant affine value x̂ = 𝑥 .

Procedure 1 RangeBound(𝑓𝜃 , 𝑐, {𝑣𝑖 })
Input: A function 𝑓𝜃 : R𝑑 → R and a query box 𝐵 of dimension

𝑠 ≤ 𝑑 defined by its center 𝑐 ∈ R𝑑 , and 𝑠 orthogonal box axis
vectors {𝑣𝑖 ∈ R𝑑 }, not necessarily coordinate axis-aligned.

Output: A bound on the sign of 𝑓𝜃 (𝑥) ∀𝑥 ∈ 𝐵 as one of

POSITIVE, NEGATIVE, or UNKNOWN.
1: x̂← 𝑐 +∑𝑠

𝑖=1 𝑣𝑖𝜀𝑖 ⊲Construct affine bounds defining the box
2: ŷ← 𝑓𝜃 (x̂) ⊲Propagate affine bounds (Section 3.2)
3: [𝑦−, 𝑦+] ← range(ŷ) ⊲Bound the output (Equation 3)
4: if 𝑦− > 0 then return POSITIVE

5: if 𝑦+ < 0 then return NEGATIVE
6: else return UNKNOWN

3.6 Implementation
To facilitate integration in deep learning pipelines, we implement

affine arithmetic for neural implicit surfaces, as well as our geo-

metric queries, in the JAX framework [Bradbury et al. 2018]. We

also investigated a prototype JAX range analysis implementation

as a general transformation applied to arbitrary JAX programs—we

ultimately found that specifying to MLPs resulted in a more efficient

implementation, but this is an exciting avenue for future investiga-

tion. Range analysis on neural networks and the queries below are

evaluated entirely on the GPU, where we leverage parallel traversals

and dynamic batching to compute efficiently with fixed-size array

kernels; an implementation is included as supplementary material.

All timings are measured on an RTX 2070 GPU.

To ensure correctness, we also validate our range analysis bounds

by fuzz-testing Procedure 1 on 10
6
randomly sampled input regions

with a variety of network architectures, ensuring that point-sampled

function evaluations always lie within floating point tolerance of

the computed bounds. These tests succeed in all cases.

4 GEOMETRIC QUERIES
Range analysis via affine arithmetic now provides the key missing

tool for geometric operations on general neural implicit surfaces by

efficiently computing bounds on the value of the implicit function

over spatial regions. In this section, we develop a variety of useful

geometric queries using these bounds—in many cases, these queries

are possible on general neural implicit surfaces for the first time.

Appendix B lists additional configuration details for experiments.

Visualization. All figures are rendered via direct ray casting of

neural implicit surfaces using our ray cast query (Section 4.2), and

are shaded via material capture (except in Figure 14). Ground shad-

ows are evaluated via casting rays upward followed by a Gaussian

blur, and an ambient occlusion term is approximated by sampling

points on a hemisphere, again both using our ray casting operation.

Spelunking the Deep: GuaranteedQueries on General Neural Implicit Surfaces via Range Analysis • 107:7

4.1 Defining Convergence and Correctness
Selecting an appropriate convergence criterion is a subtle but im-

portant dilemma in all of the queries we would like to perform, both

to avoid excess computation, and to ensure termination even in

imperfect floating-point arithmetic. In other settings (e.g. implicit

SDFs), convergence can be defined in terms of the magnitude of the

implicit function, when some |𝑓 (𝑝) | < 𝜖 . However, such a conver-

gence test is not appropriate for general implicit functions, where

the magnitude of 𝑓 might vary wildly, and is not known a priori.
Similarly, it is infeasible to provably capture all, pathologically small

features which might exist in an implicit surface, given the bounded

accuracy of numerical computation.

Instead, we argue for defining conver-

gence and correctness in the sense that the

output of a query must be correct for some

surface which is a dilation or contraction of

the true level set by at most some small 𝛿

(see inset). For example, in the case of ray

casting below, this criterion implies detect-

ing convergence whenever a point 𝑝 within

𝛿 along the ray has 𝑓 (𝑝) with the opposite sign from the origin, and

it also means that when not converged, a step of size 𝛿 is always

safe. Similar convergence policies are used in all other queries as

well—we guarantee that results are within 𝛿 of the true level set,

and that a region of the surface of size at least 𝛿 is never “missed”

by the query, no matter what the magnitude of 𝑓 might be. We use

𝛿 = 0.001 for all examples, on shapes normalized to the unit sphere.

fixed steps
(size 0.005)

2140M steps, 67.0sec214M steps, 6.8sec

fixed step
(size 0.05)

ours

60M steps, 6.5sec

fixed-size steps
range analysis (ours)

render time (seconds)

render error
(image)

10-3

10-2

10-1

101 102

Fig. 6. Previously, casting rays against general neural implicit surfaces
required small, fixed-sized steps, used here to render an image. Large steps
can miss parts of the surface (top, left), but smaller steps are expensive (top,
middle). Our approach avoids tuning a step size, and is much faster. (top,
right). We measure this effect via the image error at various render time
budgets (bottom), varying the fixed step size or our convergence parameter
𝛿 , respectively.

4.2 Ray Casting
Finding the intersection with a ray is the most common and widely-

studied geometric query on implicit surfaces. Precisely, given a ray

source 𝑝 ∈ R3 and direction 𝑟 ∈ R3, we seek the smallest 𝑡 > 0

such that 𝑓 (𝑝 + 𝑡𝑟) = 0. Often these rays are primary pixel rays in

some view of the scene, but ray casting also arises more broadly in

rendering and beyond.

We adopt a simple strategy of marching along the ray, attempting

steps of size 𝜎 : if range arithmetic can bound the implicit function

away from 0 on the step interval, we take the step and increase

𝜎 by a factor 𝜂+, otherwise we decrease 𝜎 by a factor of 𝜂− and

retry the step. Similar approaches have a long history in computer

graphics [De Cusatis et al. 1999; Gamito and Maddock 2007; Mitchell

1990]. Equipped with range bounds on MLPs from Section 3, we can

now apply this strategy to general neural implicit surfaces for the

first time. This scheme is described precisely in Procedure 2. It is

used to render all visualizations in this work, and Figure 6 gives a

comparison to alternative approaches.

Validating steps with range analysis guarantees correct output

regardless of the choice of initial step size, and adapting the step size

by 𝜂+, 𝜂− automatically adjusts to an appropriate scale for the prob-

lem. We suggest 𝜎0 = 𝑡max/10, 𝜂− = 0.5, and 𝜂+ = 1.5 as reasonable

step size parameters, and use these values in all experiments. The

miss threshold 𝑡max depends on the length scale and typical casting

distance; we use 𝑡max = 10. for shapes normalized to the unit sphere.

In principle, ray casting queries could be further accelerated using

the spatial bounding hierarchy from Section 4.5.

Procedure 2 CastRay(𝑓𝜃 , 𝑝, 𝑟)
Input: An implicit surface 𝑓𝜃 : R𝑑 → R, and a ray source and

direction 𝑝, 𝑟 ∈ R3.
Output: The distance 𝑡 to the ray-surface intersection, or no hit.

1: 𝜎 ← 𝜎0, 𝑡 ← 0 ⊲Initialize steps
2: 𝑓0 ← 𝑓𝜃 (𝑝)
3: while 𝑡 < 𝑡max do ⊲March forward
4: 𝑝𝑐 ← 𝑝 + (𝑡 + 𝛿)𝑟 ⊲Convergence test
5: 𝑓𝑐 ← 𝑓𝜃 (𝑝𝑐)
6: if DifferentSigns(𝑓0, 𝑓𝑐) then return 𝑡 ⊲Found hit
7: 𝑐 ← 𝑝 + (𝑡 + 𝜎/2)𝑟 ⊲Construct 1d query box
8: 𝑣 ← (𝜎/2)𝑟
9: if RangeBound(𝑓𝜃 , 𝑐, {𝑣}) ≠ UNKNOWN then ⊲Section 3
10: 𝜎∗ ← 𝜎, 𝜎 ← 𝜎𝜂+ ⊲Step is safe, increase step size
11: else
12: 𝜎∗ ← 0, 𝜎 ← 𝜎𝜂− ⊲Step is not safe, decrease step size
13: 𝑡 ← 𝑡 +max(𝜎∗, 𝛿) ⊲Take step (tolerance 𝛿 is always safe)
14: end while
15: return NO_HIT

107:8 • Sharp and Jacobson

4.3 Frustum Ray Casting
When casting primary rays to render an image, rays from adjacent

pixels traverse similar regions of space, wastefully repeating similar

computation—an effect which becomes more pronounced at higher

resolutions. This observation has led to a variety of techniques

in traditional ray tracing and even range analysis which process

groups of nearby rays simultaneously e.g. by Flórez et al. [2006];

Reshetov et al. [2005]. Similar concerns arise in neural volumetric

rendering (e.g. [Barron et al. 2021]), although there the objective is

approximate anti-aliasing moreso than exact spatial acceleration.

By applying 3D range analysis to a box which bounds a frustum of

rays, we can accelerate ray casting against existing neural implicit

surfaces while still guaranteeing precisely correct results.

range
analysis

Our strategy is to initialize

a coarse set of frusta over the

primary pixel rays in an im-

age, and march each frustum

forward with steps similar to

Procedure 2 (see inset). The

frusta are dynamically subdi-

vided whenever the step size 𝜎 becomes smaller than the width of

the frustum, eventually reducing to individual pixel rays as they

hit the surface. Although 3D range analysis over boxes is moder-

ately more expensive than 1D analysis (see Table 1), the algorithmic

advantage of amortizing locally-similar computation leads to sig-

nificant performance improvements over casting individual rays

(Figure 8). This gap widens as resolution increases, improving scal-

ing for high-fidelity renderings.

4.4 Empty Spheres

Fig. 7. A slice of a solution to
a scalar Laplace problem with
Dirichlet boundary values on
a neural implicit surface, ap-
proximated via random walks.
Range analysis enables empty-box
queries with a throughput of 196k
queries per second.

An empty sphere query at a point

𝑝 reports the radius of a sphere at

𝑝 which does not intersect the sur-

face. This radius is not required to

bemaximal, though larger radii are

preferred. Much like interval ray

marching, we can evaluate empty

sphere queries by applying range

analysis on a box centered at 𝑝:

if range arithmetic determines the

box is POSITIVE or NEGATIVE then
we have answered the query, and

if not we try a smaller box.

A natural application of empty

sphere queries is traversing ran-

dom walks in space, repeatedly

moving to a random point on

the empty sphere until eventu-

ally reaching the surface. These

random walks enable a grid-

free Monte-Carlo scheme for the

Poisson-like PDEs which are wide-

spread in graphics and geometry

ray casting
6.72 sec, 65.1M steps

0

165

frustum ray casting
1.59 sec, 8.18M steps steps

Fig. 8. Range analysis enables ray casting of general neural implicit func-
tions, here applied to a neural occupancy function. We can also use 3D range
analysis to bound volumetric regions of space, enabling frustum ray casting
where blocks of rays are marched forward in a single evaluation, without
any approximation error. Plots show the amortized number of marching
steps per pixel; frustum steps are shared by many rays, greatly decreasing
the total number of steps. Rendered at 1024 × 1024 resolution.

processing [Nabizadeh et al. 2021; Sawhney and Crane 2020]. How-

ever, the true value of bounding 3d spatial regions arises from con-

structing hierarchies over the domain.

4.5 Spatial Hierarchies
Hierarchical spatial acceleration structures are a cornerstone tool

in high-performance visual computing, from bounding volume hi-

erarchies to mipmaps. Recent work has likewise shown dramatic

performance benefits in the neural implicit context (e.g. [Barron et al.
2021; Takikawa et al. 2021]). However, these methods target fast

forward evaluation and training rather than evaluating geometric

queries as investigated here, and introduce new customized archi-

tectures. Instead, we will show that range analysis can be used to

build guaranteed hierarchies over arbitrary existing neural implicit

surfaces, even ordinary MLPs, enabling a variety of fast guaranteed

spatial queries.

First, in Procedure 3 we describe a general branch-and-bound

procedure for constructing a bounding 𝑘-D tree of a neural im-

plicit surface using range analysis. The queries below in Section 4.6

through Section 4.10 all make use of variants of this strategy, adapt-

ing either the refinement criterion for the tree or the manner in

which it is traversed.

On convergence the resulting tree has guaranteed accuracy, in the

sense that nodes classified as POSITIVE or NEGATIVE are necessarily
strictly outside or inside of the shape, respectively, and UNKNOWN
nodes are within 𝛿 of the level set. This property in-turn enables

spatial queries with guaranteed accuracy by evaluation over the set

of tree nodes. An exception to the convergence policy is Sections 4.6

and 4.7, where the query demands refinement to a predefined depth.

In practice, BuildSpatialTree is not implemented recursively, but

iteratively in parallel rounds of exploring and expanding batches of

nodes. A similar strategy could be used to build other acceleration

structures such an octree or bounding volume hierarchy, but here

we use a 𝑘-d tree because it is simple and extends trivially to higher

dimension (e.g. for bounding with respect to latent parameters).

Spelunking the Deep: GuaranteedQueries on General Neural Implicit Surfaces via Range Analysis • 107:9

In principle a similar tree could be constructed without range

analysis, via a sufficiently dense grid of samples to classify nodes

in the sense of Section 4.1. However, such an approach would be

dramatically more expensive. As an example, constructing such a

tree for the shape in Figure 11 would require 5.3B function samples,

which already require 193 seconds to evaluate; building our tree

takes just 0.610 seconds.

Procedure 3 BuildSpatialTree(𝑓𝜃 , 𝑥𝑙 , 𝑥𝑢)
Input: An implicit surface 𝑓𝜃 : R𝑑 → R, and domain bounds

𝑥𝑙 , 𝑥𝑢 ∈ R𝑑 as lower and upper corners of bounding box.

Output: A 𝑘-d tree bounding the level set of 𝑓𝜃 .

1: ⊲Classify the value of 𝑓𝜃 in the node (Section 3)
2: 𝑥𝑐 ← (𝑥𝑙 + 𝑥𝑢)/2
3: 𝑣 ← Diag(𝑥𝑢 − 𝑥𝑐) ⊲Diagonal matrix from vector
4: 𝑡 ← RangeBound(𝑓𝜃 , 𝑥𝑐 , 𝑣)
5:

6: ⊲Test convergence for nodes away from the level set
7: if 𝑡 ∈ {NEGATIVE, POSITIVE} then
8: return {(𝑥𝑙 , 𝑥𝑢 , 𝑡)}
9:

10: ⊲Test convergence for small nodes near surface (Section 4.1)
11: ⊲(alternately, recurse to some fixed depth instead)
12: if max(𝑥𝑢 − 𝑥𝑙) < 𝛿/

√
𝑑 then

13: {𝑝𝑖 } ← PointOnEachFaceOfNode(𝑥𝑙 , 𝑥𝑢)
14: if any(𝑓𝜃 (𝑝𝑖) < 0) ∧ any(𝑓𝜃 (𝑝𝑖) > 0) then
15: return {(𝑥𝑙 , 𝑥𝑢 , 𝑡)} ⊲Node is within 𝛿 of level set
16:

17: ⊲Compute a split point
18: 𝑖𝑠 ← argmax(𝑥𝑢 − 𝑥𝑙) ⊲Widest dimension of node
19: 𝑥𝑠 ← 0

𝑑 , 𝑥𝑠,𝑖𝑠 ← (𝑥𝑢 − 𝑥𝑙)𝑖𝑠 ⊲Vector to new midpoint
20:

21: ⊲Recurse on both subtrees and return the union of all nodes
22: T𝑎 ← BuildSpatialTree(𝑓𝜃 , 𝑥𝑙 , 𝑥𝑢 − 𝑥𝑠)
23: T𝑏 ← BuildSpatialTree(𝑓𝜃 , 𝑥𝑙 + 𝑥𝑠 , 𝑥𝑢)
24: return T𝑎 ∪ T𝑏

4.6 Surface Sampling

0.1s

1s

10s

0

time

number of samples 106

rejection sampling
ours

14.3x
faster

Fig. 9. A runtime comparison of implicit
surface sampling schemes.

Sampling a set of points on

a surface is a common oper-

ation in geometric machine

learning, often used to evalu-

ate a loss function or metrics

such as Chamfer distance.

Consider in particular sam-

pling 𝑁 points which have

|𝑓 (𝑝) | < 𝑟 . The naive ap-

proach is a rejection strategy,

uniformly sampling the domain until enough valid points are found.

Instead, our spatial hierarchy can be used to find a set of nodes

which necessarily contain all regions with |𝑓 (𝑝) | < 𝑟 ; sampling

from these nodes only rather than the whole domain is dramatically

more efficient. We leverage the 𝑘-D tree described in Section 4.5,

implicit surface sampled pointsspatial hierarchy nodes

Fig. 10. Sampling a points on a surface is a common task in geometric learn-
ing. Our spatial hierarchies can be used to sample efficiently, outperforming
naive rejection sampling by an order of magnitude for large sample sets.

refining to a fixed depth while discarding nodes which are classified

by range analysis as having 𝑓 > 𝑟 or 𝑓 < −𝑟 .
Figure 10 shows the result of this process, and Figure 9 plots

the corresponding runtime for generating a specified number of

samples with our method and with naive rejection sampling. After

an initial cost of building the hierarchy, our method becomes an

order of magnitude faster—this gap widens as smaller sampling

bands are used or the number of samples increases.

For applications requiring points lying more precisely on the

surface, our samplingmay benefit from “polishing” using themethod

of Wang et al. [2021], but this is left as future work.

4.7 Hierarchical Mesh Extraction
Implicit representations are appealing for their mesh-free nature,

but nonetheless it is common to extract an explicit triangle mesh of

the level set, either as a format conversion or to enable operations de-

fined only on a mesh [Park et al. 2019]. Our spatial hierarchy can be

leveraged to accelerate marching cubes mesh extraction [Lorensen

and Cline 1987] by only extracting from cells near the surface, while

necessarily producing the same output as brute-force extraction.

In this case, given an extraction resolution 2
𝑚

along each dimen-

sion, we build a spatial hierarchy via Procedure 3 to a fixed depth

of 3𝑚 while retaining all nodes classified as UNKNOWN. The factor
of 3 arises from splitting the 𝑘-D along each dimension. Applying

marching cubes extraction individually in each node then generates

the resulting mesh—the nodes excluded by the hierarchy necessarily

would not contribute. In practice, we apply dense extraction at the

bottom 𝑙 = 3 levels of our hierarchical for performance.

The hierarchical nature of our mesh extraction bears resemblance

to the method of Mescheder et al. [2019]. When the network is

smooth, we suspect their method could be faster, though surface fea-

tures smaller than their initial low-resolution grid could be missed.

In contrast, our method is guaranteed to split cells that contain the

surface, with error bounded by the finest grid resolution. Moreover,

our method will work for arbitrarily misbehaving implicits (e.g.,

randomly initialized networks, for use in loss functions).

107:10 • Sharp and Jacobson

implicit
surface

spatial hierarchy

extracted mesh
1.23M faces
in 1.46 sec

considered
for extraction

Fig. 11. If an explicit mesh is desired, our spatial bounding hierarchy enables
an adaptive variant of marching cubes which avoids evaluating the function
in large empty regions. This yields the same output as ordinary dense
marching cubes, but scales much more efficiently to high-resolution meshes.

Figure 11 shows the result of this procedure, where a 1.23 million

face mesh is extracted in 1.46 seconds, including the time to build the

hierarchy. Merely evaluating 𝑓 at an equivalent grid of dense points

would take 5.03 seconds. In fact, this procedure scales remarkably

well to even higher resolution meshes: extracting a 4.9 million face

mesh of the same implicit surface takes just 4.13 seconds, while

dense evaluation would require 39 seconds. As an added bonus, the

resulting mesh lies in the leaf nodes of a k-D tree by construction—it

already has a spatial acceleration structure ready for subsequent

processing if desired.

Here we treat only classic marching cubes, other approaches such

as dual contouring [Ju et al. 2002] could be applied using a similar

strategy. Additionally, our spatial acceleration is also compatible

with differentiable variants of mesh extraction [Liao et al. 2018; Shen

et al. 2021], though we do not yet pursue an implementation.

4.8 Bulk Properties
Physical simulation on implicit

shapes requires evaluating bulk

properties such as mass and mo-

ments of inertia via integrals

over the interior of the shape.

The spatial hierarchy (Proce-

dure 3) makes it straightforward

to evaluate these integrals by ac-

cumulating contributions from all interior nodes. We estimate the

contribution from any UNKNOWN nodes straddling the boundary via

random sampling, akin to Section 4.6. If the tree is fully refined,

the resulting values already satisfy the convergence guarantee in

Section 4.1, although faster runtimes can be obtained by refining to

some fixed depth. If desired, we can further bound the possible error

in an integral via the largest and smallest possible contribution from

any UNKNOWN nodes in the hierarchy. The mass of the inset shape

is computed to a relative accuracy of 5 × 10−4 via this strategy in

0.77 seconds, vs. 6.72 seconds for integration with uniform random

samples.

intersection
found

verified not
intersecting

search hierarchy

Fig. 12. Our queries are used to detect intersections between a pair of
general neural implicit shapes. The inset image shows the k-d tree used to
bound the space. Each cell has been verified to not overlap with at least one
of the two shapes, indicated by the color.

4.9 Intersection and Collisions
Given two neural implicit shapes, how can we test whether they

intersect one another? This basic operation will be increasingly nec-

essary for tasks like path planning and simulation if neural implicit

surfaces are to be incorporated in realistic virtual environments.

Our spatial hierarchy (Procedure 3) can be used to test for inter-

sections by simultaneously subdividing the tree with respect to

two implicit functions. If either function is bounded POSITIVE in a

node, then that node necessarily does not contain an intersection.

Repeatedly subdividing the tree either yields a node in which the

surfaces intersect, or verifies that there is no such intersection.

Figure 12 shows this procedure testing for intersections between

two neural implicit surfaces, one of which is encoded as an SDF

and the other as an occupancy function. The runtime for that exam-

ple is 80ms per query; computing the query to the same accuracy

guarantee via a densely sampled grid would require 5.3B function

samples and several minutes of processing. We note that, coupled

with the bulk properties in Section 4.8, we have now developed the

core computational ingredients for rigid body simulation of neural

implicit surfaces, an exciting avenue for ongoing applications.

4.10 Closest Points
Given a point in space, a closest point query seeks the nearest location
on the neural implicit level set. On an exact signed distance function

the nearest point on the surface can be computed as 𝑝nearest =

𝑝 − 𝑓 (𝑝)∇𝑓 (𝑝), but for approximate neural SDFs and more general

neural implicit surfaces, there is no such clear strategy. Fortunately,

our hierarchical bounding 𝑘-d tree is also a natural data structure

to perform closest point queries. Indeed, finding nearest-neighbor

points is a classic application of 𝑘-d trees; the only nuance in this

case is that the target set of points is a continuum encoded by the

implicit function.

Given a query point 𝑝 , we descend the tree from Procedure 3: if

test points sampled on the faces of a node include both signs of the

implicit function, then the node necessarily spans the surface, and

we update the closest-point distance as the farthest distance from 𝑝

to any point in the node, using the node center as the corresponding

Spelunking the Deep: GuaranteedQueries on General Neural Implicit Surfaces via Range Analysis • 107:11

Fig. 13. We project query points to the closest point on the neural implicit
level set. Black query points are sampled randomly in space, red points are
their projections.

location. Nodes which are bounded away from the level set need not

be explored, as well as those for which the nearest point in the node

is farther than the closest distance already found. As elsewhere,

the near-surface convergence criterion described in Procedure 3

ensures a result within a small 𝛿 of the true level set (Section 4.1).

Figure 13 shows the result of this procedure; each closest point query

takes 70ms on average. Evaluating the same queries by expanding a

dense grid samples would require on-average 604M function evalua-

tions, for a runtime of 22.2 seconds per query. In this setting, unlike

most other volumetric queries, we find affine-fixed evaluation
to be about 3× faster than affine-full, perhaps because quickly
discovering a reasonably-near point truncates the search more effec-

tively than tighter range bounds. Our implementation is designed

to minimize latency: each query point performs an independent

lazy traversal of the tree, usually only exploring a small subset of

the possible nodes. If desired, the entire tree could instead be con-

structed initially and then directly traversed; which would decrease

the cost per query at the expense of some initial precomputation.

4.11 Alternative Approaches
In general, there are not well-established prior strategies for geomet-

ric queries on general neural implicit surfaces beyond ray casting.

Nonetheless, here we reflect on several potential alternatives dis-

cussed in Section 2.

Some queries can potentially be implemented by approximating

the result with many samples taken randomly or in a regular grid.

The primary disadvantage to this approach is performance; an exces-

sive number of samples may be required, a problem which becomes

much worse as resolution increases. We provide several experi-

mental comparisons to brute-force sampling approaches, showing

that our guaranteed range-based queries offer significant benefits

(Figure 6, Figure 9, Section 4.7, Section 4.9, and Section 4.10).

Another possibility is to extract a mesh of the surface, and apply

mesh-based techniques. This too may be an expensive option, and

runs the risk of aliasing fine-scale features—typical mesh extrac-

tion resolutions are much coarser than the 𝛿 = 0.001 convergence

tolerance used in our experiments. Nonetheless, when mesh-based

computation is used, our fast mesh extraction (Section 4.7) can be

used to accelerate the process.

A more principled approach is to leverage a global Lipschitz

bound |∇𝑓 | < 𝐿. Intuitively, Lipschitz bounds are a global coun-

terpart to our local range analysis. However, whereas our range

analysis bounds the function locally with respect to each individual

evaluation, the Lipschitz constant is computed once for the entire

domain, and hence typically gives much less tight bounds. One

popular technique is to estimate 𝐿 as the product of the maximum

eigenvalues of dense layer matrices computed via a power method,

which has found applications in deep network regularization and

robustness [Arjovsky et al. 2017; Miyato et al. 2018; Tsuzuku et al.

2018]. In our context, replacing 𝑓 → 𝑓 /𝐿 would transform any

implicit function in to a weak signed distance function. However,

global Lipschitz bounds computed in this manner are extremely

pessimistic, on the order of 10
5
for networks even when they fit

high-quality SDFs, making Lipschitz bounds ineffective for guaran-

teed geometric queries on existing networks.

5 AN APPLICATION TO INVERSE RENDERING
Inverse rendering directly optimizes scene data to match target

images, encompassing many tasks in computer graphics and vision.

A full review is beyond the scope of this section; we refer to Tewari

et al. [2021], Li et al. [2018], and Nicolet et al. [2021].

Neural implicit surfaces are an appealing representation for sur-

face geometry in inverse rendering, but their use requires somehow

intersecting primary rays from a camera against the implicit sur-

face. Existing work resorts to either raycasting with small, fixed

timesteps (e.g. [Niemeyer et al. 2020]), or extracting a mesh and

then rasterizing (e.g. [Cole et al. 2021]). Our ray casting queries

Section 4.2 are a valuable new primitive operation in this context,

enabling fast and accurate rendering of a neural implicit surface,

even when randomly initialized.

In Figure 14 we demonstrate a simple inverse rendering appli-

cation as a proof of concept. Here, we fit a neural implicit surface

to synthetic target camera views, and render using our ray cast-

ing queries and Blinn-Phong shading [Blinn 1977]. Only two loss

terms are used, an 𝐿1 image difference loss and a ray occupancy

loss which prevents collapse by encouraging the shape to match

the foreground mask of the target images (a similar loss appears in

Niemeyer et al. [2020, Eqn. 14 & 15]). We note that this simple and

effective occupancy loss is only available when fitting occupancy

networks, as opposed to SDF networks. Enabling the use of such

more general networks is a key goal of this work. Appendix B gives

training details.

107:12 • Sharp and Jacobson

target (view 1/20) initial optimized

Fig. 14. Neural implicit surfaces are a promising representation for inverse
rendering, but optimization requires casting camera rays in to the surface
defined by a not-yet-fitted network—our queries are well-suited to the
task. In this simple example, a neural implicit shape is optimized to match
rendered images of a target surface. The initial view is 100 optimization
steps after random initialization. Details in Section 5 and Appendix B.

Though intentionally simple, Figure 14 demonstrates the promise

of our approach. In the future, our ray casting primitive could be

leveraged in a variety of neural inverse rendering formulations,

from deep priors [Mescheder et al. 2019] to global illumination

differentiable renderers [Nimier-David et al. 2019].

6 CONCLUSION
This work studies the application of automatic range analysis to

general neural implicit surfaces, enabling a wide variety of useful

geometric queries to be applied to existing architectures.

Limitations. Our queries offer guaranteed accuracy in sense of

Section 4.1. However, we do not address inaccuracies which might

arise due to evaluation in inexact floating point arithmetic, although

we do not notice any such instabilities in practice. Existing work

in range analysis can bound floating point error via careful ma-

nipulation of rounding modes [Stolfi and De Figueiredo 1997], but

exact queries would likely demand exact arithmetic, a pursuit which

has yielded powerful albeit complex and expensive algorithms else-

where in computational geometry [Fabri and Pion 2009].

There remains a gap between the runtime performance of neural

SDF-based queries such as fast ray casting (demonstrated at real-

time rates by Takikawa et al. [2021] and elsewhere), and the more

general queries presented here. Indeed, if one has a high-quality

SDF on which sphere tracing is acceptably accurate, it should cer-

tainly be used for that purpose. Rather, the goal of this work is to

efficiently extend ray casting—and many other queries—to a much

broader set of architectures and applications where a high-quality

SDF is unavailable, such as the inverse rendering task in Section 5.

It is then unsurprising that our more general approach comes at

additional computational cost. In this work we have focused mainly

on introducing new algorithms, but further investigation of high-

performance kernels could likely accelerate our method signifi-

cantly.

Future Work. For now, we primarily study small MLP-like archi-

tectures for neural implicit surfaces, but our techniques should also

apply more broadly to other architectures with little modification.

Interestingly, architectures which store data in an underlying spatial

structure [Müller et al. 2022; Takikawa et al. 2021], could be handled

by deriving range bounds for sampling from the structure. With

generalization in mind, we investigated a prototype implementation

of range analysis as a fully-automatic transformation which can be

applied to arbitrary JAX programs, and we are eager to explore such

an approach as a general tool for more exotic architectures.

More broadly, the ability to perform range analysis and build

spatial hierarchies likely has value to many other applications of

neural fields [Xie et al. 2022]. One particular area of interest is

neural volumetric rendering [Mildenhall et al. 2020] where we could

apply range analysis to hierarchical volumetric integration with

guaranteed accuracy. In general, we hope that providing tools which

apply broadly across many architectures and applications will be a

key that unlocks many promising research directions.

ACKNOWLEDGMENTS
The authors are grateful to Aravind Ramakrishnan, Otman Benche-

kroun, and Rohan Sawhney for assistance preparing experiments

and reviewing early drafts, as well as Towaki Takikawa, David Levin,

and Derek Nowrouzezahrai for insightful discussions.

This research is funded in part by the Fields Institute for Mathe-

matical Sciences, the Vector Institute for AI, the Sloan Research Foun-

dation, NSERC Discovery Grants (RGPIN2017-05235, RGPAS–2017-

507938), New Frontiers of Research Fund (NFRFE-201), the Ontario

Early Research Award program, the Canada Research Chairs Pro-

gram, and gifts by Adobe Systems.

REFERENCES
Stavros P Adam, George D Magoulas, Dimitrios A Karras, and Michael N Vrahatis. 2016.

Bounding the search space for global optimization of neural networks learning

error: an interval analysis approach. Journal of Machine Learning Research 17 (2016),

1–40.

Götz Alefeld and Günter Mayer. 2000. Interval analysis: theory and applications. Journal
of computational and applied mathematics 121, 1-2 (2000), 421–464.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein generative

adversarial networks. In International conference on machine learning. PMLR, 214–

223.

Matan Atzmon and Yaron Lipman. 2020a. Sal: Sign agnostic learning of shapes from

raw data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2565–2574.

Matan Atzmon and Yaron Lipman. 2020b. SALD: Sign Agnostic Learning with Deriva-

tives. In International Conference on Learning Representations.
Csaba Bálint and Gábor Valasek. 2018. Accelerating Sphere Tracing. Proceedings of

Eurographics Short Papers (2018), 4 pages.
Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-

Brualla, and Pratul P Srinivasan. 2021. Mip-nerf: A multiscale representation for

anti-aliasing neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 5855–5864.

David Betancourt and Rafi Muhanna. 2021. Interval Deep Learning for Uncertainty

Quantification in Safety Applications. arXiv preprint arXiv:2105.06438 (2021).
James F Blinn. 1977. Models of light reflection for computer synthesized pictures.

In Proceedings of the 4th annual conference on Computer graphics and interactive
techniques. 192–198.

James F. Blinn. 1982. A Generalization of Algebraic Surface Drawing. ACM Trans.
Graph. 1, 3 (1982), 235–256.

Jules Bloomenthal, Chandrajit Bajaj, Jim Blinn, Marie-Paule Cani, Alyn Rockwood,

Brian Wyvill, and Geoff Wyvill. 1997. Introduction to Implicit Surfaces.
James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,

Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, SkyeWanderman-

Milne, and Qiao Zhang. 2018. JAX: composable transformations of Python+NumPy
programs. http://github.com/google/jax

Bryan Chan. 2008. Static Analysis for Efficient Affine Arithmetic on GPUs. Master’s

thesis. University of Waterloo.

Zhiqin Chen and Hao Zhang. 2019. Learning Implicit Fields for Generative Shape

Modeling. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019. Computer Vision Foundation / IEEE, 5939–

5948. http://openaccess.thecvf.com/content_CVPR_2019/html/Chen_Learning_

Spelunking the Deep: GuaranteedQueries on General Neural Implicit Surfaces via Range Analysis • 107:13

Implicit_Fields_for_Generative_Shape_Modeling_CVPR_2019_paper.html

Forrester Cole, Kyle Genova, Avneesh Sud, Daniel Vlasic, and Zhoutong Zhang. 2021.

Differentiable surface rendering via non-differentiable sampling. In Proceedings of
the IEEE/CVF International Conference on Computer Vision. 6088–6097.

JLD Comba and J Stolfi. 1993. Affine arithmetic and its applications to computer

graphics. Anais do VII SIBGRAPI, 9–18.

Hongkai Dai, Benoit Landry, Lujie Yang, Marco Pavone, and Russ Tedrake. 2021.

Lyapunov-stable neural-network control. Robotics: Science and Systems (2021).
Thomas Davies, Derek Nowrouzezahrai, and Alec Jacobson. 2020. On the Effectiveness

of Weight-Encoded Neural Implicit 3D Shapes. (2020). https://arxiv.org/abs/2009.

09808

ADe Cusatis, Luiz Henrique De Figueiredo, andMarcelo Gattass. 1999. Interval methods

for ray casting implicit surfaces with affine arithmetic. In XII Brazilian Symposium
on Computer Graphics and Image Processing (Cat. No. PR00481). IEEE, 65–71.

Tom Duff. 1992. Interval Arithmetic Recursive Subdivision for Implicit Functions

and Constructive Solid Geometry. In Proceedings of the 19th Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH ’92). Association for

Computing Machinery, New York, NY, USA, 131–138. https://doi.org/10.1145/

133994.134027

Tim Elsner, Moritz Ibing, Victor Czech, Julius Nehring-Wirxel, and Leif Kobbelt. 2021.

Intuitive Shape Editing in Latent Space. (2021). https://arxiv.org/abs/2111.12488

Andreas Fabri and Sylvain Pion. 2009. CGAL: The computational geometry algorithms

library. In Proceedings of the 17th ACM SIGSPATIAL international conference on
advances in geographic information systems. 538–539.

Jorge Flórez, Mateu Sbert, Miguel A Sainz, and Josep Vehí. 2006. Improving the interval

ray tracing of implicit surfaces. In Computer Graphics International Conference.
Springer, 655–664.

Oleg Fryazinov, Alexander A. Pasko, and Peter Comninos. 2010. Fast reliable interroga-

tion of procedurally defined implicit surfaces using extended revised affine arith-

metic. Comput. Graph. 34, 6 (2010), 708–718. https://doi.org/10.1016/j.cag.2010.07.003
Eric Galin, Eric Guérin, Axel Paris, and Adrien Peytavie. 2020. Segment Tracing

Using Local Lipschitz Bounds. Comput. Graph. Forum 39, 2 (2020), 545–554. https:

//doi.org/10.1111/cgf.13951

Manuel N Gamito and Steve C Maddock. 2007. Ray casting implicit fractal surfaces

with reduced affine arithmetic. The Visual Computer 23, 3 (2007), 155–165.
Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and Thomas A. Funkhouser.

2020. Local Deep Implicit Functions for 3D Shape. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020. Computer Vision Foundation / IEEE, 4856–4865.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin,

Jonathan Uesato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. 2018.

On the effectiveness of interval bound propagation for training verifiably robust

models. arXiv preprint arXiv:1810.12715 (2018).
Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. 2020. Implicit

Geometric Regularization for Learning Shapes. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event
(Proceedings of Machine Learning Research, Vol. 119). PMLR, 3789–3799.

John C. Hart. 1996. Sphere Tracing: A Geometric Method for the Antialiased Ray

Tracing of Implicit Surfaces. The Visual Computer 12, 10 (Dec. 1996), 527–545.

https://doi.org/10/b3q2p6

Wolfgang Heidrich and Hans-Peter Seidel. 1998. Ray-tracing Procedural Displacement

Shaders. In Proceedings of the Graphics Interface 1998 Conference, June 18-20, 1998,
Vancouver, BC, Canada, Wayne A. Davis, Kellogg S. Booth, and Alain Fournier (Eds.).

Canadian Human-Computer Communications Society, 8–16.

Wolfgang Heidrich, Philipp Slusallek, and Hans-Peter Seidel. 1998. Sampling Procedural

Shaders Using Affine Arithmetic. ACM Trans. Graph. 17, 3 (1998), 158–176. https:

//doi.org/10.1145/285857.285859

Matt Jordan and Alexandros G. Dimakis. 2020. Exactly Computing the Local Lipschitz

Constant of ReLU Networks. In Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,

Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.).

Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. 2002. Dual contouring of

hermite data. In Proceedings of the 29th annual conference on Computer graphics and
interactive techniques. 339–346.

Matthew J. Keeter. 2020. Massively Parallel Rendering of Complex Closed-Form Implicit

Surfaces. ACM Trans. Graph. 39, 4, Article 141 (jul 2020), 10 pages. https://doi.org/

10.1145/3386569.3392429

Benjamin Keinert, Henry Schäfer, Johann Korndörfer, Urs Ganse, and Marc Stamminger.

2013. Improved Ray Casting of Procedural Distance Bounds. Journal of Graphics
Tools 17, 4 (Oct. 2013), 127–138.

Aaron Knoll, Younis Hijazi, Charles Hansen, Ingo Wald, and Hans Hagen. 2007. Inter-

active Ray Tracing of Arbitrary Implicits with SIMD Interval Arithmetic. In 2007
IEEE Symposium on Interactive Ray Tracing. 11–18.

Aaron Knoll, Younis Hijazi, Andrew E. Kensler, Mathias Schott, Charles D. Hansen, and

Hans Hagen. 2009. Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval

and Affine Arithmetic. Comput. Graph. Forum 28, 1 (2009), 26–40. https://doi.org/

10.1111/j.1467-8659.2008.01189.x

Jiabao Lei and Kui Jia. 2020. Analytic Marching: An Analytic Meshing Solution from

Deep Implicit Surface Networks. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event (Proceedings of
Machine Learning Research, Vol. 119). PMLR, 5789–5798.

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable

monte carlo ray tracing through edge sampling. ACM Transactions on Graphics
(TOG) 37, 6 (2018), 1–11.

Yiyi Liao, Simon Donne, and Andreas Geiger. 2018. Deep marching cubes: Learning

explicit surface representations. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2916–2925.

William E Lorensen and Harvey E Cline. 1987. Marching cubes: A high resolution

3D surface construction algorithm. ACM siggraph computer graphics 21, 4 (1987),
163–169.

Jai Menon. 1996. An Introduction to Implicit Techniques.
Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas

Geiger. 2019. Occupancy networks: Learning 3d reconstruction in function space. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
4460–4470.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-

mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields

for View Synthesis. In ECCV 2020, Vol. 12346. Springer, 405–421.
Matthew Mirman, Maximilian Baader, and Martin Vechev. 2021. The Fundamental

Limits of Interval Arithmetic for Neural Networks. arXiv preprint arXiv:2112.05235
(2021).

Don P Mitchell. 1990. Robust ray intersection with interval arithmetic. In Proceedings
of Graphics Interface, Vol. 90. 68–74.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. 2018. Spectral

normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957
(2018).

Ramon E Moore, R Baker Kearfott, and Michael J Cloud. 2009. Introduction to interval
analysis. SIAM.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant

Neural Graphics Primitives with a Multiresolution Hash Encoding. arXiv:2201.05989
(Jan. 2022).

Mohammad Sina Nabizadeh, Ravi Ramamoorthi, and Albert Chern. 2021. Kelvin

transformations for simulations on infinite domains. ACM Transactions on Graphics
(TOG) 40, 4 (2021), 1–15.

Baptiste Nicolet, Alec Jacobson, andWenzel Jakob. 2021. Large steps in inverse rendering

of geometry. ACM Transactions on Graphics (TOG) 40, 6 (2021), 1–13.
Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. 2020. Dif-

ferentiable volumetric rendering: Learning implicit 3d representations without 3d

supervision. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 3504–3515.

Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2:

A retargetable forward and inverse renderer. ACM Transactions on Graphics (TOG)
38, 6 (2019), 1–17.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-

grove. 2019. Deepsdf: Learning continuous signed distance functions for shape

representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 165–174.

Ken Perlin and Eric M. Hoffert. 1989. Hypertexture. In Proceedings of the 16th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1989, Boston,
MA, USA, July 31 - August 4, 1989, James J. Thomas (Ed.). ACM, 253–262.

Magdalena Proszewska, Marcin Mazur, Tomasz Trzciński, and Przemysław Spurek.

2021. HyperCube: Implicit Field Representations of Voxelized 3D Models. arXiv
preprint arXiv:2110.05770 (2021).

Inigo Quilez. 2008. 3D SDF functions. https://www.iquilezles.org/www/articles/

distfunctions/distfunctions.htm

Dietmar Ratz. 1996. An optimized interval slope arithmetic and its application. Inst. für
Angewandte Mathematik.

Tim Reiner, Gregor Mückl, and Carsten Dachsbacher. 2011. Interactive Modeling

of Implicit Surfaces Using a Direct Visualization Approach with Signed Distance

Functions. Computers and Graphics 35, 3 (June 2011), 596–603.
Edoardo Remelli, Artem Lukoianov, Stephan R. Richter, Benoît Guillard, Timur M.

Bagautdinov, Pierre Baqué, and Pascal Fua. 2020. MeshSDF: Differentiable Iso-

Surface Extraction. In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual.

Alexander Reshetov, Alexei Soupikov, and Jim Hurley. 2005. Multi-level ray tracing

algorithm. ACM Transactions on Graphics (TOG) 24, 3 (2005), 1176–1185.
A. Ricci. 1973. A Constructive Geometry for Computer Graphics. Comput. J. 16, 2

(1973), 157–160. https://doi.org/10.1093/comjnl/16.2.157

Siegfried M Rump. 1999. INTLAB—interval laboratory. In Developments in reliable
computing. Springer, 77–104.

107:14 • Sharp and Jacobson

Siegfried M Rump and Masahide Kashiwagi. 2015. Implementation and improvements

of affine arithmetic. Nonlinear Theory and Its Applications, IEICE 6, 3 (2015), 341–359.

Deepti Moyi Sahoo, Abhishek Das, and Snehashish Chakraverty. 2015. Interval data-

based system identification of multistorey shear buildings by artificial neural net-

work modelling. Architectural Science Review 58, 3 (2015), 244–254.

Rohan Sawhney and Keenan Crane. 2020. Monte Carlo Geometry Processing: A Grid-

Free Approach to PDE-Based Methods on Volumetric Domains. ACM Trans. Graph.
39, 4 (2020).

Dario Seyb, Alec Jacobson, Derek Nowrouzezahrai, and Wojciech Jarosz. 2019. Non-

linear sphere tracing for rendering deformed signed distance fields. ACM Trans.
Graph. 38, 6 (2019), 229:1–229:12.

Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. 2021. Deep

Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shape Syn-

thesis. Advances in Neural Information Processing Systems 34 (2021).
Jorge Stolfi and Luiz Henrique De Figueiredo. 1997. Self-validated numerical methods

and applications. In Monograph for 21st Brazilian Mathematics Colloquium, IMPA,
Rio de Janeiro. Citeseer, Vol. 5. Citeseer.

Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek

Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2021. Neural

geometric level of detail: Real-time rendering with implicit 3D shapes. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 11358–11367.

Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srinivasan, Edgar Tretschk, Yifan

Wang, Christoph Lassner, Vincent Sitzmann, Ricardo Martin-Brualla, Stephen Lom-

bardi, et al. 2021. Advances in neural rendering. arXiv preprint arXiv:2111.05849
(2021).

Theo Thonat, Francois Beaune, Xin Sun, Nathan Carr, and Tamy Boubekeur. 2021.

Tessellation-Free Displacement Mapping for Ray Tracing. 40, 6, Article 282 (dec

2021), 16 pages. https://doi.org/10.1145/3478513.3480535

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. 2018. Lipschitz-margin training:

scalable certification of perturbation invariance for deep neural networks. In Proceed-
ings of the 32nd International Conference on Neural Information Processing Systems.
6542–6551.

Aladin Virmaux and Kevin Scaman. 2018. Lipschitz regularity of deep neural networks:

analysis and efficient estimation. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada. 3839–3848.

Yifan Wang, Shihao Wu, Cengiz Öztireli, and Olga Sorkine-Hornung. 2021. Iso-Points:

Optimizing Neural Implicit Surfaces With Hybrid Representations. In IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25,
2021. Computer Vision Foundation / IEEE, 374–383.

Geoff Wyvill, Craig McPheeters, and Brian Wyvill. 1986. Data structure for soft objects.
Vis. Comput. 2, 4 (1986), 227–234. https://doi.org/10.1007/BF01900346

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan,

Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. 2022.

Neural Fields in Visual Computing and Beyond. Computer Graphics Forum (2022).

Guandao Yang, Serge Belongie, Bharath Hariharan, and Vladlen Koltun. 2021. Geometry

Processing with Neural Fields. Advances in Neural Information Processing Systems
34 (2021).

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. 2021. Volume Rendering of

Neural Implicit Surfaces. NeurIPS (2021).
Wang Yifan, Lukas Rahmann, and Olga Sorkine-hornung. 2022. Geometry-Consistent

Neural Shape Representation with Implicit Displacement Fields. In International
Conference on Learning Representations.

Rosalind Cecily Young. 1931. The algebra of many-valued quantities. Math. Ann. 104, 1
(1931), 260–290.

A AFFINE ARITHMETIC RULES FOR MLPS
The operations needed to apply affine arithmetic to MLPs have

been established in past work (e.g. Stolfi and De Figueiredo [1997]),

but a variety of different conventions and notations may obscure

implementation.We gather these operations here in concise notation

to facilitate future adoption.

For any vector quantity ®𝑥 ∈ R𝑚 which arises while evaluating

an MLP, we programmatically represent the affine approximation

®̂𝑥 via the tuple of values (®𝑥0, 𝑋, ®𝑥∞), where ®𝑥0 ∈ R𝑚 is the base

value, 𝑋 ∈ R𝑚×𝑁 is a stacked matrix of 𝑁 column vectors encoding

the coefficients for each affine term, and ®𝑥∞ ∈ R𝑚 is a special

distinguished affine coefficient as a convenient notation to model

terms truncated during condensation (Section 3.3). We distinguish

the coefficient 𝑥∞ because terms varying due to 𝜀∞ must be treated

as distinct whenever they arise in expression—unlike other affine

coefficients it does not e.g. cancel under subtraction, because it

captures variation from many distinct sources. The vector-valued

affine approximation of 𝑥 is then

x̂ = 𝑥0 +
∑︁
𝑖<𝑁

𝑋𝑖𝜀𝑖 + 𝑥∞𝜀∞ (6)

where 𝑋𝑖 denotes the 𝑖’th column of 𝑋 . For the remainder of this

section, we will drop the vector notation and simply write x̂ and

(𝑥0, 𝑋, 𝑥∞).
The affine representation is initialized as in Proce-

dure 1: to construct an affine approximation of a not-

necessarily axis-aligned 𝑠-dimensional box in R𝑑 , we

take as input the center of the box 𝑐 ∈ R𝑑 and a col-

lection of 𝑠 orthogonal vectors from the center to the

sides of the box {𝑣0, ..., 𝑣𝑠−1} (1d and 3d constructions shown inset).

The initial coefficients are then

𝑥0 ← 𝑐, 𝑋 ← [𝑣0; ...; 𝑣𝑠], 𝑥∞ ← ®0.

To propagate these bounds forward through a network, we re-

quire rules to update bounds after addition (by a constant as well

as other with affine quantities), multiplication by a constant, ma-

trix multiplication by a constant, and activation functions. Table 2

lists the rules, while Table 3 gives expressions for computing affine

approximation parameters for common activation functions.

B ADDITIONAL DETAILS
Here, we give miscellaneous configuration details for the algorithms

and experiments above.

Range Analysis Empirical Study. To construct a small benchmark

dataset of neural implicit surfaces, we gather a collection of 10

shapes including characters, mechanical models, and 3D scans, and

fit several MLPs to each, using all combinations of ReLU vs. ELU
nonlinearities, as well as fitting SDFs under an 𝐿1 penalty vs. occu-
pancy under cross-entropy loss. Each MLP has 7 hidden layers of

width 32 for a total of 7553 parameters. Training points are sampled

as in [Davies et al. 2020], and we train for 100 epochs with the

ADAM optimizer, using a batch size of 512 and learning rate of 10
−2

decreased by a factor 10 after 50 epochs.

Timings aremeasured in the experimental configuration described

in Section 3.6, and all time statistics are normalized to the fastest

variant. To quantify the tightness of the bounds from each range

analysis variant, we sample many random regions of varying sizes,

and test whether the implicit function can be bounded away from

zero over the region. Precisely, for any region size 𝑠 , we compute 𝑓 ,

the fraction of regions such that Procedure 1 outputs POSITIVE or
NEGATIVE. We then report the largest 𝑠 such that 𝑓 ≥ 50%. Bigger

𝑠 means tighter bounds; this size is an indication of e.g. how large

of steps must be taken for ray casting, or how large the cells in the

spatial hierarchy can be. Values are averaged over 10,000 random

regions per implicit surface, and for timings we furthermore take

the fastest of 5 runs to account for warm-up and other variance. We

additionally measure the time to cast rays corresponding to pixels

of a 256 × 256 camera view centered on the surface.

Spelunking the Deep: GuaranteedQueries on General Neural Implicit Surfaces via Range Analysis • 107:15

Table 2. The update rules to propagate affine arithmetic bounds on MLPs. All quantities are in-general vector or matrix-valued.

Name Operation New 𝑧0 New 𝑍 New 𝑧∞ Notes

constant addition 𝑧 ← x̂ + 𝑎 𝑥0 + 𝑎 𝑋 𝑥∞
affine addition 𝑧 ← x̂ + ŷ 𝑥0 + 𝑦0 𝑋 + 𝑌 𝑥∞ + 𝑦∞

constant multiplication 𝑧 ← 𝑎x̂ 𝑎𝑥0 𝑎𝑋 |𝑎 |𝑥∞
matrix multiplication 𝑧 ← 𝐴x̂ 𝐴𝑥0 𝐴𝑋 |𝐴|𝑥∞ |𝐴| is element-wise

nonlinearities 𝑧 ← ℎ(x̂) 𝛼𝑥0 + 𝛽 [𝛼𝑋 ; diag(𝛾)] |𝛼 |𝑥∞ see Equation 4 and Table 3

Table 3. Formulas for affine approximation of common nonlinear function in neural networks. To propagate bounds through each function, the parameters 𝛼 , 𝛽 ,
𝛾 are computed for the given x̂, and then applied to produce output 𝑦 as in Equation 4. In implementation, care must be taken with fractional terms to ensure
stability when 𝑥− = 𝑥+. Here, cos ([𝑥−, 𝑥+]) denotes the maximum and minimum value of cos on [𝑥−, 𝑥+], which can be computed via modular arithmetic.
The computed parameters for sin(x̂) use the same form as Chebyshev approximations for convex functions, but are not the Chebyshev approximation because
the function is not convex.

Nonlinearity Parameters 𝛼 ,𝛽 ,𝛾 Notes Diagram

ReLU(x̂)

[𝑥−, 𝑥+] ← range(x̂)

𝛼 ← ReLU(𝑥+) − ReLU(𝑥−)
𝑥+ − 𝑥−

𝛽 ← (ReLU(𝑥−) − 𝛼𝑥−)/2
𝛿 ← 𝛽

Chebyshev approximation

ELU(x̂)

[𝑥−, 𝑥+] ← range(x̂)
if 𝑥𝑙− > 0 : 𝛼 ← 1, 𝛽 ← 0, 𝛾 ← 0

else:

𝛼 ← ELU(𝑥+) − ELU(𝑥−)
𝑥+ − 𝑥−

𝑟𝑢 ← ELU(𝑥−) − 𝛼𝑥−
𝑟𝑙 ← (𝛼 − 1.) − 𝛼 (ln𝛼 − 𝛼𝑥−)
𝛽 ← (𝑟𝑢 + 𝑟𝑙)/2
𝛿 ← 𝑟𝑢 − 𝛽

Chebyshev approximation

sin(x̂)

[𝑥−, 𝑥+] ← range(x̂)
[𝑠−, 𝑠+] ← cos ([𝑥−, 𝑥+])
𝛼 ← (𝑠− + 𝑠+)/2
𝑒𝑝 ← arccos𝛼, 𝑒𝑛 ← − arccos𝛼
E ← [𝑥−, 𝑥+,

clamp(2𝜋ceil(𝑥− + 𝑒𝑝)/(2𝜋) − 𝑒𝑝 , 𝑥−, 𝑥+),
clamp(2𝜋ceil(𝑥− + 𝑒𝑛)/(2𝜋) − 𝑒𝑛, 𝑥−, 𝑥+),
clamp(2𝜋floor(𝑥− − 𝑒𝑝)/(2𝜋) + 𝑒𝑝 , 𝑥−, 𝑥+),
clamp(2𝜋floor(𝑥− − 𝑒𝑛)/(2𝜋) + 𝑒𝑛, 𝑥−, 𝑥+)]

𝑟𝑢 ← max

𝑒∈E
(sin(𝑒) − 𝛼𝑒)

𝑟𝑙 ← max

𝑒∈E
(sin(𝑒) − 𝛼𝑒)

𝛽 ← (𝑟𝑢 + 𝑟𝑙)/2
𝛿 ← 𝑟𝑢 − 𝛽

107:16 • Sharp and Jacobson

Ray Casting. Wemarch with a small safety tolerance, taking steps

of size 0.98𝜎 to mitigate floating point inaccuracy, although we do

not observe failures due to floating point in any case. For frustum

ray casting, we initialize a 16×16 grid of coarse frusta, and subdivide
frusta in half along the largest dimension whenever the width of that

dimension along the forward face is greater than twice the current

step size 𝜎 . Additionally, we note that the length of the bounding

box used for range analysis needs to be extended slightly beyond

the front face of the frustum defined by the rays in its corners,

because the contained rays actually sweep out a spherical region.

We compute the correct extent by forming a ray along the center

of the frustum with length 𝑡 + 𝜎 , and measuring the distance of its

endpoint from the frustum base.

Mesh Extraction. We build the tree with affine-all range anal-

ysis, and use dense evaluation for the lowest 𝑙 = 3 levels.

Inverse Rendering. The inverse rendering example in Figure 14

fits a 5-layer, 128-width network with ELU activations to 20 camera

views, each at 512 × 512 resolution, equally spaced in a sphere

around the subject. The ground truth is rendered from a triangle

mesh with Blinn-Phong shading by 3 fixed point lights in the scene.

The loss is 10× the 𝐿1 image difference on the rendered image, plus a

cross-entropy occupancy loss on the minimum value of the implicit

function as sampled at 100 points along each ray. Rays from each

pixel in all views are combined and batched with size 512. We train

for 4 epochs using the ADAM optimizer, with a learning rate of 1𝑒−3

decayed by a factor of 0.5 on each epoch. The rendered initial view

in Figure 14 is shown after a small number (100) of training steps,

because the randomly-initialized network on the first iteration is

not visually coherent.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Range Analysis of Neural Implicit Shapes
	3.1 Interval Arithmetic
	3.2 Affine Arithmetic
	3.3 Reduced Affine Arithmetic
	3.4 Selecting a Range Analysis Strategy
	3.5 Applying Range Analysis
	3.6 Implementation

	4 Geometric Queries
	4.1 Defining Convergence and Correctness
	4.2 Ray Casting
	4.3 Frustum Ray Casting
	4.4 Empty Spheres
	4.5 Spatial Hierarchies
	4.6 Surface Sampling
	4.7 Hierarchical Mesh Extraction
	4.8 Bulk Properties
	4.9 Intersection and Collisions
	4.10 Closest Points
	4.11 Alternative Approaches

	5 An Application to Inverse Rendering
	6 Conclusion
	Acknowledgments
	References
	A Affine Arithmetic Rules for MLPs
	B Additional Details

