
PointTriNet: Learned Triangulation of 3D Point
Sets – Supplementary Material

Nicholas Sharp and Maks Ovsjanikov

A Loss functions

These loss functions are introduced in the main document. Here we give addi-
tional details and implementation notes.

A.1 Overlap loss

This loss is used to penalize triangles which overlap in space. The key ingredient
is a spatial kernel, the definition of which is reproduced here as

gt(x) := pt max(0, 1− dn(x)

de(x)
), (1)

Fig. 1: A volumetric ren-
dering of the overlap
kernel from Equation 1.

for any point x ∈ R3, where pt is the triangle prob-
ability, dn(x) is the distance in the normal direction
from the triangle, de(x) is the smallest signed per-
pendicular distance to the triangle’s edges, and we let
gt(x) := 0 for points where de(x) ≤ 0.

More precisely, suppose a triangle has vertices
(p0, p1, p2) and unit normal n. Then gt(x) could be
computed, for instance, via the expressions

dn(x) := |(x− p0) · n|, (2)

where · denotes the dot product, and

de(x) := min

{
min
i∈0,1,2

(x− pi) · ( pi+1−pi
||pi+1−pi|| × n)

0
(3)

where the index in pi+1 is taken modulo 3, and the outer min(. . . , 0) automat-
ically ensures that gt(x) takes a value of 0 for points which are outside of the
triangle when projected in to the triangle plane.



2 N. Sharp & M. Ovsjanikov

A.2 Watertight loss

In a watertight and manifold mesh, all edges have exactly two incident trian-
gles. Accordingly, our watertightness loss penalizes edges that have a number of
incident triangles other than two (that is, just one or more than two incident
triangles). Because we work with probabilistic surfaces, the loss is the expected
fraction of such non-watertight edges (reproduced here)

LW :=
∑
ij∈E

pij(1− pwater
ij ) (4)

where E is the set of edges, pij denotes the probability that ij appears in the
triangulation, and pwater

ij denotes the probability that ij is watertight. As noted
in the main text, this loss only captures connectivity across edges, and thus
does not explicitly discourage vertex-nonmanifold triangulations. However, we
observe that practice, there are very few configurations which are watertight but
not vertex-manifold (essentially just an “hourglass” configuration). Since such
configurations are very particular and rare, this watertightness loss seems to be
sufficient to encourage vertex-manifold triangulations in practice.

To evaluate this quantity discretely, we decompose it as a sum over halfedges
h, where the term halfedge refers to a side of a triangle (in a manifold mesh,
each of these sides forms half of an edge). Each triangle has three halfedges.
As always, we will make the approximation that all triangle probabilities are
independent.

Recall that pt denotes the probability associated with triangle t. For any
halfedge h, let τ(h) be the triangle containing h, and e(h) be the edge on which
h is incident. For any edge g, let Ng be the set of halfedges incident on g, and
we will say that these halfedges are neighbors. For a halfedge h, the probability
that there is exactly one other neighbor halfedge incident on the same edge is
given by

p1 other
h :=

∑
k∈Ne(h)

k 6=h

(
pτ(k)

∏
j∈Ne(h)

j 6=h,k

1− pτ(j)
)
. (5)

In this expression, the outer sum is over all halfedges k which could be neighbors
of h, and for each it computes the probability that k is present and is the only
neighbor of h.

The full loss is then computed as

LW ←
∑
h pτ(h) ∗ (1− p1 other

h )∑
h pτ(h)

(6)

where we normalize the expectation as a fraction of halfedges, because the prob-
abilistic surface does not have an obvious number of edges.



PointTriNet: Learned Triangulation of 3D Point Sets – Supplement 3

B Comparison to Scan2Mesh

This work is the first to directly consider the triangulation of point sets via ma-
chine learning. The most related learning-based approach is the recent Scan2Mesh
(see main document for citation). There are significant differences between the
problem considered in this work and the problem considered in Scan2Mesh.
Most importantly, Scan2Mesh does not attempt to triangulate arbitrary input
vertex sets, or scale beyond a few hundred elements. Additionally, Scan2Mesh
uses volumetric signed-distance data as input, and is not designed to operate on
unstructured point cloud input as considered here. Nonetheless, in the interest
of comparison, we construct a network inspired the architecture in Scan2Mesh
and apply it to our task.

We will refer to this comparison approach as Scan2Mesh-like, to distinguish
it from the original work. In the style of the two-phase triangle prediction net-
work in Scan2Mesh, we first form the k-nearest-neighbor graph among input
vertices with k = 16, and apply a message-passing graph network. This network
is identical to the architecture used in Scan2Mesh, except that the inputs are
simply the vertex positions, and the output is an edge probability in [0, 1]. We
then form all possible triangles among the resulting edges, and assign each an
initial probability as the product of the three edge values. For the second phase,
we construct another graph network among the dual graph of these triangles,
and compute per-triangle input features as in Scan2Mesh. This graph network
predicts a new probability for each triangle, which is multiplied by the initial
triangle probability to generate an output value. Scan2Mesh is trained in part
using cross-entropy losses against simplified target meshes; to apply Scan2Mesh-
like to our task, we instead apply our unsupervised loss functions, and train with
the dataset and methodology described in Section 4 until convergence.

We emphasize that Scan2Mesh-like has many differences from Scan2Mesh,
and should not be considered an implementation of that work, merely a similar
method inspired by Scan2Mesh. Differences include:

– Scan2Mesh as presented performs dense |V |×|V | edge prediction. Scan2Mesh-
like predicts edges on just the k nearest-neighbors, to enable scaling to vertex
sets of size |V | = 1000 at the cost of likely missing some edges and triangles.

– Scan2Mesh is trained using a multi-stage, supervised loss function, while
Scan2Mesh-like is trained using the probabilistic loss functions and point
dataset presented in this work.

– The triangulation networks in Scan2Mesh access data on a volumetric grid,
while Scan2Mesh-like operates solely on points.

Table 1 gives the result of evaluating the trained Scan2Mesh-like on our
dataset, and Figure 2 visualizes some samples. The task and architecture of
Scan2Mesh-like have several differences from Scan2Mesh, but this experiment
serves as some basic evidence that the iterative, PointNet-based architecture
presented in this work can outperform the dual-graph prediction network from
Scan2Mesh.



4 N. Sharp & M. Ovsjanikov

Fig. 2: Meshes resulting from the Scan2Mesh-like network, corresponding to Fig-
ure 4 from the main document. Attempting to generate watertight, manifold
meshes yields incomplete triangulations. One cause is that in an attempt to
scale Scan2Mesh to 1000s of input vertices, we consider only triangles formed
among the 16 nearest-neighbor vertices, which omits important triangles (using
k > 16 is prohibitively expensive). In our method, the proposal network solves
this issue by scalably generating good candidates.

Table 1: Evaluation of the Scan2Mesh-like network for the triangulation task on
uniformly-sampled ShapeNet.

Chamfer ×100 watertight manifold

ours 0.7417 77.0% 97.4%
scan2mesh-like 1.1887 23.3% 96.5%



PointTriNet: Learned Triangulation of 3D Point Sets – Supplement 5

C Ablation Study

We justify the components of our approach via an ablation study (Table 2). The
no_tris variant omits the neighboring triangles in the classification network.
The no_proposal variant omits the proposal network, and instead samples new
neighbors heuristically, preferring close neighbors on the correct side of each
edge. The no_overlap variant omits the overlap loss, setting λO = 0. We find
that both the neighboring triangles and the proposal network are critical for
high-quality connectivity in the results, removing either significantly degrades
the watertightness. The overlap term contributes a small improvement to all
metrics.

Table 2: An ablation study over the components of our method on ShapeNet.
Both the proposal network and neighboring triangles improve watertightness.

Chamfer watertight manifold

full method 0.7417 77.0% 97.4%
no_tris 0.8310 64.6% 95.7%
no_proposal 0.7748 66.4% 97.1%
no_overlap 0.7489 76.0% 96.8%



6 N. Sharp & M. Ovsjanikov

D Extended results

In Table 3 below, we give per-class results for the evaluation of our method over
uniformly-sampled ShapeNetCore, as presented in Table 1 of the main document.
Our method is purely local and geometric, and does not rely on class-specific fea-
tures; we always train and test on all classes simultaneously. Evaluation statistics
are shown per-class here only for the sake of analysis.

table

Chamfer watertight manifold

ours 0.8536 76.3% 97.4%
ballpivot 1.4081 82.5% 100.0%
alpha3 1.1418 50.5% 61.8%
alpha5 0.7649 48.2% 53.3%

chair

Chamfer watertight manifold

ours 0.7716 76.9% 97.5%
ballpivot 1.4477 82.9% 100.0%
alpha3 1.1966 53.4% 65.6%
alpha5 0.9103 54.8% 60.2%

airplane

Chamfer watertight manifold

ours 0.5475 75.4% 97.3%
ballpivot 0.6295 93.9% 100.0%
alpha3 0.6594 48.0% 53.8%
alpha5 1.0095 45.5% 50.4%

car

Chamfer watertight manifold

ours 1.0552 73.3% 97.0%
ballpivot 1.5956 78.7% 100.0%
alpha3 1.3668 52.8% 64.5%
alpha5 1.3501 49.8% 55.1%

sofa

Chamfer watertight manifold

ours 0.8276 77.6% 97.4%
ballpivot 1.9450 75.8% 100.0%
alpha3 1.5633 51.0% 67.6%
alpha5 1.3046 52.9% 58.5%

rifle

Chamfer watertight manifold

ours 0.4703 75.7% 97.3%
ballpivot 0.5567 98.5% 100.0%
alpha3 0.5510 49.2% 54.9%
alpha5 0.7479 44.2% 49.6%

lamp

Chamfer watertight manifold

ours 0.5009 79.9% 97.9%
ballpivot 0.8036 92.0% 100.0%
alpha3 0.6486 43.8% 52.0%
alpha5 0.7780 41.7% 47.1%

watercraft

Chamfer watertight manifold

ours 0.5996 76.6% 97.4%
ballpivot 0.7777 91.5% 100.0%
alpha3 0.7643 49.3% 56.3%
alpha5 1.0656 43.0% 48.3%

bench

Chamfer watertight manifold

ours 0.8119 74.2% 97.2%
ballpivot 1.0239 87.6% 100.0%
alpha3 0.8777 51.7% 59.7%
alpha5 0.8638 48.9% 53.9%

speaker

Chamfer watertight manifold

ours 0.7806 79.4% 97.6%
ballpivot 2.1313 74.1% 100.0%
alpha3 1.5941 48.2% 67.1%
alpha5 0.9852 45.5% 51.8%

Table 3: Extended results from Table 1 of the main document, reported by class
over the 10 most common classes. Chamfer values are upscaled ×100 for display.



PointTriNet: Learned Triangulation of 3D Point Sets – Supplement 7

Triangle quality can have numerical implications for subsequent applications;
extremely acute or obtuse triangles may increase approximation error or lead to
poor conditioning of optimization problems. In Figure 3, we analyze the trian-
gle quality in the meshes resulting from various reconstruction methods. The
results are generally similar, though we observe that ball pivoting has the least
prevalence of very acute triangles with angles < 10 degrees. We also recall that
widely-used marching cubes reconstruction likewise can yield many acute sliver
triangles.

0 30 60 90 120 150 180
corner angle (degrees)

ours

0 30 60 90 120 150 180
corner angle (degrees)

ballpivot

0 30 60 90 120 150 180
corner angle (degrees)

alpha3

0 30 60 90 120 150 180
corner angle (degrees)

alpha5

Fig. 3: Histograms of corner angles in all triangles resulting from various recon-
struction schemes on sampled ShapeNet, corresponding to Table 1 from the main
document.


	PointTriNet: Learned Triangulation of 3D Point Sets – Supplementary Material

