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Fig. 1. We fit neural networks as reduced-order models to learn low-dimensional approximations of complex physical systems. This approach applies to a
broad range of systems and requires no data as input, only a differentiable energy function and a seed state for sampling. Here, we show a 3-dimensional
neural subspace for a system wherein a ball rolls around on a pinned cloth. The ball location and cloth geometry are simultaneously encoded by the subspace,
which is fit automatically from a potential energy that includes gravity, cloth bending and stretching, and a collision penalty between the ball and the cloth.

Physical systems ranging from elastic bodies to kinematic linkages are de-

fined on high-dimensional configuration spaces, yet their typical low-energy

configurations are concentrated on much lower-dimensional subspaces. This

work addresses the challenge of identifying such subspaces automatically:

given as input an energy function for a high-dimensional system, we produce

a low-dimensional map whose image parameterizes a diverse yet low-energy

submanifold of configurations. The only additional input needed is a single

seed configuration for the system to initialize our procedure; no dataset of

trajectories is required. We represent subspaces as neural networks that map

a low-dimensional latent vector to the full configuration space, and propose

a training scheme to fit network parameters to any system of interest. This

formulation is effective across a very general range of physical systems;

our experiments demonstrate not only nonlinear and very low-dimensional

elastic body and cloth subspaces, but also more general systems like collid-

ing rigid bodies and linkages. We briefly explore applications built on this

formulation, including manipulation, latent interpolation, and sampling.
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1 INTRODUCTION
Physical simulation algorithms perennially achieve new heights of

detail and fidelity. Modern computer graphics techniques success-

fully capture phenomena from elasticity to fluid motion, producing

visual effects that are nearly indistinguishable from real life. With

this added realism, however, comes substantial computational ex-

pense, often placing detailed physical simulation in the realm of

offline computations involving many degrees of freedom.

In settings like interactive graphics, however, it is advantageous to

reparameterize the system with a much smaller number of degrees

of freedomwhich describe only the states that are actually of interest.

These subspaces, or reduced order models enable downstream tasks,

most traditionally fast simulation in reduced coordinates, but also

other operations such as user-guided animation, interpolation, or

sampling states of the system.

However, identifying such subspaces is inevitably challenging, be-

cause they must trade-off between the conciseness and expressivity.

Classical reduced-order simulation methods such as linear modal

analysis or modal derivatives have typically focused on perturbative

motions about a rest state for a deformable object. These methods

are highly effective numerical schemes for fast forward-integration

of system dynamics; our approach will seek a complementary tech-

nique in two senses.

First, such approaches typically only approximate object behavior

in a truncated region about the rest pose, and dramatic nonlinear

motions are not well-represented in the subspace. This concern is

already impactful for the classic case of deformable bodies undergo-

ing large motions, but is a total show-stopper when seeking reduced

kinematics for more general physical systems, such as rigid bodies

under collision penalties. In these settings, the kinematic landscape

is so nonlinear that an approximation in terms of a local expansion

does not capture any significant behavior.

Second, our subspaces will parameterize only the desired config-

uration space of the system. The challenge of large motions can be

mitigated in perturbative methods by using a moderately large re-

duced basis. However, this returns to the original problem with the

full configuration space: the relevant system configurations again
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lie only on narrow submanifold of the space. In contrast, we seek

very low-dimensional but highly nonlinear subspaces, such that

even large motions and physical systems with irregular potential

landscapes can be directly parameterized; an important property

for applications like animation and sampling.

This work is not the first to propose using a richer class of highly

nonlinear models to fit reduced kinematics (see e.g. [Fulton et al.

2019; Holden et al. 2019; Shen et al. 2021; Srinivasan et al. 2021]).

Our motivating goal is to do so without data-driven fitting; we do

not require any dataset of representative simulation trajectories or

states as input. Collecting such a high-quality dataset is challenging

and labor-intensive, both in the sense of engineering effort and user

input. It is a significant obstacle for past methods which otherwise

offer excellent properties [Fulton et al. 2019; Hahn et al. 2014]. To be

clear, although our method leverages tools from machine learning,

it is not data-driven in the usual sense. Instead, it mirrors recent

“overfit” neural networks [Xie et al. 2022], where models are fit in

isolation to each example, and neural networks are used simply as

a general and easy-to-optimize nonlinear function space.

Summary. In this paper, we apply machine learning to identify

a nonlinear reduced model for physical motion. Our approach is

designed around two significant properties:

• We do not assume input data such as simulation trajectories

are provided. Instead, our method is self-supervised, taking the

energy function as input and automatically sampling it to explore

the low-energy subspace.

• Our method is very general, and avoids specific assumptions

about e.g. deformable bodies. It applies broadly across systems

such as rigid bodies and linkages under penalty potentials, or

even multi-physics combinations of several different interacting

systems.

rigid
bodies

penalties at
joints

Fig. 2. Our subspaces are effective on systems beyond deformable bodies
and cloth. Here, linkages are naively described by the location of each
segment, under a potential with strong penalties holding joints together.
Neural subspace optimization automatically discovers low-dimensional
kinematic motion as we fit a 1d subspace to the Klann Linkage, top, and a
3d subspace to the Stewart Mechanism, bottom.

Provided a differentiable potential energy function describing a

given physical system and a single seed state fromwhich to begin the

search, our learning algorithm automatically determines an effective

nonlinear low-order model, trading off between staying in low-

potential energy configurations and coverage of the configuration

space. Two loss parameters are exposed to adapt our objective to the

system of interest. Once fit, the parameterized kinematic subspace

can be leveraged for a variety of purposes, from simulation via

standard dense integrators in the subspace, to kinematic exploration

and sampling.We demonstrate our approach on a variety of physical

systems, including deformable bodies, cloth simulations, rigid bodies

under collision, and mechanical linkages.

2 RELATED WORK
Subspaces for Simulation. Subspace simulation methods have a

long history in engineering and graphics, beginning with linear

modal analysis [Hildebrandt et al. 2011; James et al. 2006; James

and Pai 2002; Shabana 1991; Von-Tycowicz et al. 2015]. The survey

of Benner et al. [2015] provides a broad summary. Linear modes

provide a concise basis expressing deformation around an object’s

rest state. Fast simulation methods then restrict the equations of mo-

tion to this subspace. Difficulties arise in large-deformation settings

wherein the basis size must be greatly increased to approximate

nonlinearity [Brandt et al. 2018]. Barbič and James [2005] augment

the modal basis with second-order “modal derivatives,” while still

resulting in a linear deformation subspace, and Choi and Ko [2005]

and Yang et al. [2015] explore rotation and higher order terms.

While modal derivatives offset some disadvantages of linear

modal analysis, both techniques are limited to representing de-

formations centered around a rest pose. This makes representing

highly nonlinear deformations and effects difficult, and obstructs

the application to more general physical systems as we show in Fig-

ure 8. Snapshot methods generalize beyond a region around the rest

state by collecting large databases of simulation outputs and fitting

a reduced space to that data. Initial algorithms used PCA [Noor and

Peters 1980] to construct an improved subspace, but the linear PCA

basis still must be large to capture a wide range of deformations.

Modern neural representations such as autoencoders [Fulton

et al. 2019; Shen et al. 2021] offer a potential panacea. However,

such methods again rely on simulation snapshots for training, and

thus resort to user-guided sampling, making these methods time

consuming and compute intensive. Like us, Brandt et al. [2016]

sample configuration space, but do so in a way which still only

interpolates specified configurations. Even methods learning neural

enrichments to linear subspaces [Romero et al. 2021] suffer from the

data generation problem; no successful self-supervised, data-free

learning method for nonlinear subspaces has yet been demonstrated.

Neural and Data-Driven Methods. Recent work across machine

learning shows neural networks have significant potential to model

complex physical systems efficiently [Gao et al. 2021; Kochkov et al.

2021; Pfaff et al. 2020; Tompson et al. 2017]. These approaches range

from fitting update rules to observed data, to accelerating expensive

numerical steps with data-driven proxies. The most similar of these

efforts tackle problems in dynamics and deformation, often with the

goal of producing efficient real-time simulators [Grzeszczuk et al.
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1998; Romero et al. 2020; Zheng et al. 2021]. Applications of this

work, as well as ours, include graphics, animation, robotics, design

[Li et al. 2018, 2019].

The task ofmodeling dynamics and collisions in cloth has received

particular attention [Bertiche et al. 2021, 2022; Hahn et al. 2014;

Holden et al. 2019; Santesteban et al. 2022; Zhang et al. 2021]. In

fact, Bertiche et al. [2021] and Santesteban et al. [2022] leverage

self-supervised setups which bear some similarity to ours, although

many aspects of their approach are specific to garment modeling

task. Additionally, a primary challenge in our setting is avoiding

collapse of the subspace, while with clothing this is automatically

handled by human body shape and motion distributions.

3 METHOD
We present a straightforward approach to fit a neural network mod-

eling low-energy kinematics of a physical system. The formulation

is general, applying to a broad set of systems and capturing both

linear and nonlinear subspaces. It follows widespread success fitting

low-dimensional submanifolds of high-dimensional spaces using

neural networks (e.g. [Lee and Carlberg 2020]).

3.1 Neural Subspace Maps
Consider a map 𝑓𝜃 , which takes a low-dimensional subspace R𝑑

to the high-dimensional configuration space R𝑛 of some physical

system (𝑑 ≪ 𝑛), so 𝑓𝜃 : R𝑑 → R𝑛 . For example, R𝑛 might represent

the set of all possible vertex configurations for a given triangle

mesh (so, 𝑛 = 3|𝑉 | where |𝑉 | is the number of vertices), while R𝑑

parameterizes a space of deformations that move multiple vertices

in tandem. The vector 𝜃 ∈ R𝑘 contains learnable parameters specific

to the physical system, e.g. neural network weights.

Classical simulation algorithms operate on R𝑛 , where the poten-
tial energy 𝐸pot : R𝑛 → R and external forces can be evaluated di-

rectly; the expense of physical simulation then comes from the large

number of variables 𝑛 that must be manipulated. However, R𝑛 con-

tains many unlikely configurations, corresponding to high-energy

deformations under the potential energy 𝐸pot. In many settings, we

can reasonably expect the kinematics to stay in the image 𝑓𝜃 (R𝑑 )
of some map 𝑓𝜃 parameterizing typical configurations.

As a simple example, if we take 𝜃 = (𝐴, 𝑥0) for some 𝐴 ∈ R𝑛×𝑑
and 𝑥0 ∈ R𝑛 with 𝑓𝜃 (𝑧) = 𝐴𝑧 + 𝑥0, we recover the basic setup of

linear modal analysis. In this setting, 𝑥0 is the rest state of the system,

and the columns of 𝐴 parameterize low-energy perturbations of 𝑥0.

However, linear models cannot fit general nonlinear kinematics.

More broadly, efficient and accurate simulation demands a map

𝑓𝜃 (·) spanning low-energy configurations of the system. Unlike

classical modal analysis, an immediate benefit of working with a

more general 𝑓𝜃 is that 𝑓𝜃 can encode nonlinear subspaces, rather

than only linear modes. In this work, we model 𝑓𝜃 as a neural

network, with weights 𝜃 (see Section 4.2 for architectures).

Figure 7 illustrates this property on a hanging stiff cow under

elastic and gravitational potentials. Traditional modal analysis is

limited to linear skewing about a rest pose, whereas our neural

model finds a nonlinear subspace with curved swinging motion.

samples from
reduced space

stable configurations
in reduced space

Fig. 3. We fit an 8-dimensional reduced space for a neohookean elastic bar
under gravity in a compressed buckling configuration. Top: samples from
the smooth yet irregular reduced space fit by the neural network. Bottom:
the reduced space contains both of the stable buckled configurations.

3.2 Objective Function
For any choice of subspace architecture 𝑓𝜃 , we will fit the parameters

𝜃 via stochastic gradient descent on an objective function. We must

then identify an objective function which drives 𝑓𝜃 to be a suitable,

high-quality kinematic subspace.

Our key observation is that we can optimize for 𝜃 directly using

the analytical description of the system—in particular, the potential

energy function 𝐸pot (·)—rather than requiring training data. This

approach sidesteps the data collection needed for supervised models:

We do not assemble a dataset of motion trajectories or even forward-

integrate the dynamics of the system during training.

We might seek low-energy subspaces of a system by minimiz-

ing the expected potential energy of randomly-sampled subspace

configurations 𝑧 as follows:

E𝑧∼N

[
𝐸pot (𝑓𝜃 (𝑧))

]
. (1)

Here,N denotes the Gaussian distribution over R𝑑 with mean 0 and

variance 𝐼𝑑×𝑑 ; E denotes the expectation with respect to a random

variable. Note we have not put a scale on our latent variable 𝑧, so

we are using N to capture a reasonable range of values.

Minimizing Equation 1 with respect to 𝜃 , however, yields an

uninteresting map 𝑓𝜃 : The optimal 𝑓𝜃 maps all latent variables 𝑧 to

the lowest-energy configuration, i.e., the minimizer of 𝐸pot.

To combat the degeneracy above, we also expect our subspaces to

span some sizable region of configuration space R𝑛 . To accomplish

this goal, we could attempt to impose isometry up to scale on 𝑓𝜃 ,

e.g. by enforcing that

|𝑓𝜃 (𝑧) − 𝑓𝜃 (𝑧′) |𝑀 ≈ 𝜎 |𝑧 − 𝑧′ |
for typical 𝑧, 𝑧′ ∈ R𝑑 . Here the distance in configuration space R𝑛

is measured with respect to the system’s mass matrix 𝑀 ∈ R𝑛×𝑛 :
|𝑥 |2

𝑀
:= 𝑥⊤𝑀𝑥. Equivalently, we write:

log

|𝑓𝜃 (𝑧) − 𝑓𝜃 (𝑧′) |𝑀
𝜎 |𝑧 − 𝑧′ | ≈ 0 (2)
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Enforcing strict equality in Equation 2 for all 𝑧, 𝑧′ is a stiff con-

straint; indeed, one can show that changing ≈ to = above forces

𝑓𝜃 to be affine (see Proposition B.1 in the supplemental material).

Hence, we instead use a soft penalty to avoid degeneracies:

E𝑧,𝑧′∼N

[(
log

|𝑓𝜃 (𝑧) − 𝑓𝜃 (𝑧′) |𝑀
𝜎 |𝑧 − 𝑧′ |

)
2

]
. (3)

Intuitively, this expression prefers maps 𝑓𝜃 (·) whose Lipschitz con-
stant is roughly 𝜎 everwhere. Similar formulations have recently

been leveraged in other contexts by Du et al. [2021].

Combining these terms and using 𝜆 ∈ R as a weight, we optimize

for the parameters 𝜃 as follows:

min

𝜃
E𝑧,𝑧′∼N

[
𝐸pot (𝑓𝜃 (𝑧)) + 𝜆

(
log

|𝑓𝜃 (𝑧) − 𝑓𝜃 (𝑧′) |𝑀
𝜎 |𝑧 − 𝑧′ |

)
2
]

(4)

In this formulation, our latent subspaces map from a roughly unit-

scaled region about the origin, with low-energy configurations con-

centrated near 0. To accelerate subspace fitting in practice, rather

than sampling pairs 𝑧, 𝑧′ to evaluate Equation 3, we estimate it

pairwise on all 𝑧 samples in a training batch.

The hyperparameter 𝜎 adjusts the size of the subspace. Small 𝜎

yields subspaces that are tightly concentrated around low-energy

configurations, while large 𝜎 can force the map’s image to include

higher-energy states. The weighting parameter 𝜆 should be chosen

to ensure that Equation 2 roughly holds. Hyperparameters inevitably

arise due to the wide variety of scaling and units used in physical

energies—Table 1 gives values for all experiments; see Section C.1

for additional discussion.

3.3 Reduction to Modal Analysis
When we take our parameters 𝜆 and 𝜎 to the extreme, our general

model reduces to a classical linear method for modal analysis in

physical simulation. In particular, in Appendix A we derive the

following proposition:

Fig. 4. States from an 8d reduced-order subspace of a thick hanging cloth.

Proposition 3.1. Suppose 𝑓𝜃 has the capacity to represent affine

functions. Then, as 𝜎 → 0 and 𝜆 → ∞, the solution to Equation 4

satisfies
𝑓 (𝑧) = 𝐴𝑧 + 𝑏

𝑏 = arg min𝑏 𝐸pot (𝑏)
𝐴 = 𝜎 · top-𝑑-generalized-eigenvectors(𝑀,𝐻 (𝑏)).

(5)

Inwords, as we push to preserve geometry of the configuration space

exactly (𝜆 →∞) and to prioritize small neighborhoods (𝜎 → 0), we

recover a linearization about the minimum-energy state.

3.4 Subspace Simulation
Although we focus primarily on simply encoding the kinematic

subspace, if desired our subspaces 𝑓𝜃 can also be used for forward

simulation via time integration in the latent space. In principle any

integration scheme is compatible with our approach, we leverage a

simple implicit Euler scheme.

We optimize to obtain the subspace configuration 𝑧 in the next

timestep [Hahn et al. 2012] as:

𝑧 = arg min

𝑧

[
1

2ℎ2
|𝑓𝜃 (𝑧) − 𝑞 |2𝑀 + 𝐸pot (𝑓𝜃 (𝑧))

]
, (6)

where ℎ is the timestep and 𝑞 is an inertial guess computed from

previous configurations. The optimization is performed in the neural

space 𝑧 via substitution into the optimization formulation [Fulton

et al. 2019] and solved using L-BFGS [Liu and Nocedal 1989].

The performance characteristics of this integration are very differ-

ent from past methods; an advantage is that integration is performed

in a small, dense space amenable to fast vectorized computation,

while a disadvantage is that the nonlinearity of our subspaces may

demand many optimization steps for accuracy. In general such inte-

gration is significantly faster than simulation in the full space, but

does not outperform existing specialized subspace integrators. This

work does not accelerate energy function evaluation, but could be

used in conjunction with methods such as An et al. [2008].

3.5 Conditional Subspaces
A benefit of our neural subspace formulation is that subspaces can

easily be conditioned on auxiliary data such as material parameters

and external constraints. Conditional parameters can be adjusted to

adapt the subspace to a family of systems, and even can be varied

dynamically at runtime.

More precisely, we can generalize 𝑓𝜃 to incorporate conditional

parameters as additional inputs to the neural subspace map as

𝑓𝜃 : R𝑑 × R𝑚 → R𝑛 𝑞 ← 𝑓𝜃 ( [𝑧, 𝑐]) (7)

where the conditional parameters are a vector 𝑐 ∈ R𝑚 , and [𝑧, 𝑐]
denotes vector concatenation. During training, we additionally sam-

ple from the space of system-defined valid conditional parameters

to evaluate the expectation in Equation 4. In Figure 5 we show an

elastic bar conditioned on both the location of boundary conditions,

and the material stiffness.
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4 ARCHITECTURES AND TRAINING
In principle, any neural architecture could be used to represent our

subspace map 𝑓𝜃 . In this work we focus on the problem formulation

itself, and consider only simple multi-layer perceptrons (MLPs).

4.1 Seeded Subspace Exploration
One important modification is needed to effectively train our sub-

spaces, accounting for the difficulties of stiff physical energies, which

are very different from typical data-driven machine learning losses.

The challenge is that when starting from a randomly-initialized

neural subspace map, merely finding any point on the low-energy

submanifold in configuration space amounts to a surprisingly hard

optimization problem. Consider the case of an elastic body: samples

from a randomly-initialized subspace network yield configurations

with vertices randomly positioned in space, leading to extremely

large energies and many inverted elements.

Althoughmuch recent work has tackled robust simulation of such

systems in the classical setting [Kim 2020; Lin et al. 2022; Smith

et al. 2018, 2019], here we have the added challenge that the system

degrees of freedom are parameterized by a highly nonlinear neu-

ral network sampled stochastically at each optimization step. As a

simple solution, we propose a training procedure which explores

the configuration space outward from an initial seed configuration

𝑞
seed
∈ R𝑛 provided as input to the method. Precisely, during train-

ing only we parameterize the neural subspace map as

𝑓𝜃 (𝑧) := 𝜌MLP𝜃 (𝑧) + (1 − 𝜌)𝑞seed (8)

where 𝜌 is a scheduling parameter which linearly increases from

0→ 1 as training proceeds. Crucially, at the conclusion of training,

this seed state is entirely absent and the resulting network is an

ordinary MLP. Likewise, we also modulate the scale parameters 𝜎

in Equation 3, multiplying by a factor of 𝜌 because at initialization

𝑓𝜃 is a constant map to the seed state which cannot possibly achieve

the target scale.

Intuitively, this training procedure “grows” the subspace outward

as fitting proceeds, initially expanding about the seed state but

expand boundariescompress boundaries

decrease
sti�ness

subspace sample
from average conditions

Fig. 5. Neural subspaces are easily conditioned on parameters like boundary
conditions or material properties. Here, we learn a subspace for an elastic bar,
conditioned on the material stiffness ratio and locations of pinned endpoints.
For each parameter choice, our subspace captures plausible kinematics.

subspace samplesinitial configuration

24 rigid bodies +
collision penalty

Fig. 6. A chain of rigid bodies, held together by pairwise signed-distance
collision evaluated at vertices. Despite the highly irregular potential land-
scape, our neural subspace fits an 8d subspace spanning the large-scale
continuum behaviors of the system.

ultimately gaining the freedom to parameterize an arbitrary map.

This approach does demand 𝑞
seed

as an additional input to the

method, but in our systems this proved to be no additional burden: a

suitable state was already implicit in the definition of the system, e.g.

the rest state of an elastic body, or the pinned-joint configuration of

a linkage. Also, we emphasize that the formulation in Section 3 does

not make any assumptions involving the seed state. It does not need

to be a rest state or minimal-energy configuration, any somewhat

low-energy initial state will do, and the resulting subspaces have

little dependence on the choice of seed. For example, in systems

like Figure 3 which have no single distinguished configuration, any

choice will yield similar subspaces.

4.2 Implementation Details
We implement all physical systems and neural networks in JAX [Brad-

bury et al. 2018], leveraging automatic differentiation to compute

derivatives. Our neural networks use ELU activations and 5 hidden

layers. The width of the hidden layers is adjusted from 64 − 128

based on the scale of the problem. Table 1 gives hyperparameters

for all examples in this work, and Section C.1 in the supplement pro-

vides further details about selecting parameters when applying our

method to new and different physical systems. An implementation

is included in the supplement and at github.com/nmwsharp/neural-

physics-subspaces.

We use the Adam optimizer [Kingma and Ba 2014] for training,

and a learning rate of 10
−4

for 10
6
training steps, with batch size

32. After each 250𝑘 training iterations the learning rate is decayed

by a factor of 0.5. Models are trained and evaluated on a single RTX

3090 GPU. Memory usage is modest (< 1GB/model), and training

times range from 1 minute for small systems to 1 hour for large

systems. Runtime performance when exploring or sampling the

subspace is extremely fast; a single forward pass of our networks

takes < 1𝑚𝑠 and is dominated by pipeline latencies. If the simu-

lation is time-stepped in the subspace, performance is dominated

by the cost of evaluating and differentiating the system’s energy

function, generally 10s of milliseconds per timestep for the systems

shown. A scaling study of fitting and evaluation is included in the

supplemental material.

5



Sharp et al.

Table 1. Parameters and dimensions for the experiments appearing in this work. All networks are MLPs, with the latent dimension, network size, and scaling
parameter 𝜎 adapted based on the degrees of freedom and desired range of motion for the kinematic space. See Section C.1 for extended discussion.

Name Figure Energy Full dim Reduced dim Condition dim MLP size 𝜆 𝜎

Cloth ball Figure 1 cloth + penalty 6069 3 0 5x128 1.0 0.05

Klann linkage Figure 2 rigid + penalty 84 1 0 5x64 1.0 1.0

Stewart platform Figure 2 rigid + penalty 168 6 0 5x128 0.5 1.0

Bistable bar Figures 3, 10 neohookean 830 8 0 5x128 0.5 10
−3

Hanging sheet Figure 4 cloth 6072 8 0 5x128 0.1 0.1

Conditional bar Figure 5 neohookean 942 8 2 5x128 1.0 1.0

Chain Figures 6, 8 rigid + collision 288 8 0 5x128 1.0 1.0

Mini Chain Figure 11 rigid + collision 24 4 0 5x128 1.0 0.3

Hanging cow Figure 7 neohookean 14676 3 0 5x128 0.5 0.1

Cantilever Figure 8 neohookean 1500 2 0 5x128 0.5 0.5

Elephant Figure 9 neohookean 1926 8 0 5x64 1.0 10
−4

5 EVALUATIONS

5.1 Physical Systems
Here we summarize the systems/energies considered in this work.

See Table 1 for problem sizes and parameter choices.

FEM. We use the finite element method (FEM) for the simulation

and learning of deformable objects, discretizing the continuum in

2D and 3D examples using triangular and tetrahedral elements,

respectively. We aggregate the contributions of all elements under a

stable neo-Hookean material model [Smith et al. 2018] as the total

potential energy.

Cloth model. We also model thin cloth sheets discretized as tri-

angular surface meshes. Our experiments make use of a simple

energy model with a bending term defined at edges [Grinspun et al.

2003], and a constant-strain Saint Venant–Kirchhoff (StVK) stretch-

ing term on faces. In Figure 4 we compute a subspace for a pinned

thick hanging sheet. For now, we do not model cloth self-collisions,

although Figure 1 shows basic cloth-object interactions (Figure 1).

Penalty Functions. We can also include penalties to enforce con-

straints in the system. For instance, we use penalties to prevent

collisions between objects and to enforce joint constraints in articu-

lated mechanisms. Our penalty functions are defined as:

𝑤𝑒𝑞 |𝐶𝑒𝑞 (𝑞) |2 +𝑤𝑖𝑛𝑒𝑞 |min(𝐶𝑖𝑛𝑒𝑞 (𝑞), 0) |2 (9)

where𝐶𝑒𝑞,𝐶𝑖𝑛𝑒𝑞 are the equality and inequality constraint functions

with the constraints to be imposed, and𝑤𝑒𝑞,𝑤𝑖𝑛𝑒𝑞 ∈ R+ are weight-
ing factors. These penalties must not go to infinity, because we must

optimize through them during training even when sampling violates

the constraint. These penalties are added to the energy function,

and otherwise our subspace fitting is applied as normal, fitting local

constraints without any special treatment. We demonstrate learning

with penalty functions in Figures 1 & 6, where inequality penalties

and signed distance model collision, and Figure 2, where an equality

penalty holds linkage joints together.

Rigid Bodies. We also consider rigid body dynamics, where each

body’s state is described by R12
unconstrained coefficients, inter-

preted as the entries of a 3 × 4 transformation matrix [𝑅 |𝑡]. An

additional potential term | (𝑅𝑇𝑅 − 𝐼 ) |2
2
encourages the rotation com-

ponent to be orthogonal via a Frobenius norm. Collisions are imple-

mented as naive penalties, testing all vertices of one shape against

an analytical signed distance of the other.

Figure 6 and Figure 8 show a hanging chain modeled with 24

independent rigid bodies and signed distance function collision

terms preventing separation between adjacent links. This system

is difficult to simulate classically, as even small-timestep implicit

integrators get stuck on the energy landscape, yet the expected low-

dimensional nonlinear continuum dynamics emerge automatically

as we fit our subspace.

Mechanisms and Linkages. By combining rigid body dynamics

with penalties holding joints together, we can also generate sub-

space models for complex linkages. Reduced mechanism models

have applications in engineering [Boukouvala et al. 2013; Lee and

Chen 2013]. As before, these linkages are naively modeled as free-

floating rigid objects, with strong penalties at joints; no angular or

relative parameterizations are used. The learned subspace for the

system automatically finds a low-dimensional parameterization for

linkage motion. Figure 2 demonstrates this behavior on the planar

Klann linkage and 3D Stewart mechanisms, both of which have

applications in robotics.

5.2 Comparisons and Applications
In Figure 7 we quantitatively evaluate 𝑑 = 3 subspaces computed

on a stiff deformable object pinned at a single point, and measure

the strain due to nonrigid deformation. We compare our method

with linear modal analysis, modal derivatives and the principal com-

ponent basis (PCA) of a small dataset recorded in an interactive

session. The linear approaches cannot represent rotations, and in-

stead shear and scale the shape, while our approach fits a nonlinear

rotation. Note that recent supervised approaches have also tackled

rotations by learning local motions coupled with a differentiable

physics layer [Srinivasan et al. 2021]. Also, see Section C.2 for an

additional comparison to a baseline supervised approach.

In Figure 8 we perform a side-by-side test of our subspaces, lin-

ear modal analysis, and modal derivatives on a heterogeneous de-

formable bar and rigid body chain. For all methods we compute a
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rotation

shear & scale

Fig. 7. Our neural maps encode general nonlinear subspaces, greatly increas-
ing expressivity at low dimension count. Here, we fit a 3d subspace to a stiff
3D deformable body under gravity, pinned at a single point, and measure the
rigidity of the resulting subspace. Linear and quadratic approaches cannot
encode the rotating motion in this low-dimensional subspace, whereas our
method easily fits it.

reference
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Fig. 8. A comparison of data-free subspace generation methods: ordinary
linear modal analysis, modal derivatives [Barbič and James 2005], and our
approach, applied to a heterogeneous 3D bar and a rigid body chain with
collision penalties. Each frame applies the same external load and visualizes
the equilibrium response in the subspace. For the chain, the classic local
methods contain no useful motions even at 𝑑 = 8.

subspace of matching dimension, then apply equivalent external

loads and visualize the resulting subspace equilibrium. In both ex-

periments, our subspace much more-closely matches the expected

reference physics, demonstrating the effectiveness of our approach

for fitting low-dimensional yet expressive subspaces.

Recent work on generating rich nonlinear reduced spaces requires

an input dataset of representative configurations or trajectories [Ful-

ton et al. 2019; Holden et al. 2019; Shen et al. 2021]. In these methods,

data collection is a laborious, problem-specific process that requires

humans in the loop or a scripted procedure to identify typical tra-

jectories, as noted in e.g. [Fulton et al. 2019, Sec 4.4] and [Shen et al.

2021, Sec 6.1-6.2]. In contrast, our approach does not require an in-

put dataset. We generally do not expect our approach to outperform

sampled from
automatic neural subspace

train fast supervised method
[Fulton et. al. 2018]

Fig. 9. Our approach enables automatic sampling of diverse low-energy
states of a system, useful for downstream data-driven applications. The
AutoDef algorithm [Fulton et al. 2019] offers fast, high-quality deformable
simulation in reduced space, but requires a laborious process to collect
training data. We first fit our subspace automatically to the deformable
body of interest, then sample from the subspace to train [Fulton et al. 2019],
sidestepping the need for data collection. See supplement for details.

a supervised method trained on a sufficiently large and high-quality

dataset; if a dataset is available it should certainly be used.

We also present two preliminary applications which show the

complementary value of our low-dimensional data-free scheme.

Because our subspaces densely map on to the desired submanifold

of configuration space, we can perform user-guided animation in

the subspace. The supplemental video shows a looping animation of

the hanging chain constructed by choosing a set of keyframes in the

latent space and applying a cyclic Catmull-Rom spline interpolation.

Additionally, in Figure 9, we use our automatic method as a sampler

for a downstream specialized supervised method, overcoming the

primary limitation of needing to collect a dataset.

6 CONCLUSION
This work introduces a promising approach for fitting kinematic

subspaces directly to physical systems, without gathering datasets

of trajectories.

Limitations. Our subspace training procedure inherits both the

difficulties of optimizing deep neural networks and of numerically

integrating stiff physical systems.

Fig. 10. A twisted subspace.

Local minima may also result

from isolated, locally stable con-

figurations. For example, the inset

figure shows an elastic bar pinned

at both ends, where by-chance the

training procedure has found a

local minimum that respects the

boundaries but has a 360
◦
turn.

More broadly, our subspaces may not perfectly reproduce desired

configurations due to such local minima or simply insufficient model

capacity, leading to artifacts that can be seen in some of our simula-

tions (e.g. the cloth in Figures 1 & 4, and asymmetries in Figure 5).We

find that the training procedure in Section 4.1 generally avoids such

artifacts, but it cannot guarantee to eliminate them. Future work

could develop numerical methods tailored to this hybrid problem.
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Herewemainly consider low-dimensional subspaces, fitting higher

dimensional subspaces 𝑑 > 10 with our method does not necessarily

capture additional effects, perhaps because Equation 3 becomes less

effective as dimension increases. More fundamentally, traditional

subspaces methods are accompanied by theoretical analysis, while

our neural networks currently have no corresponding physical the-

ory to quantify which effects are captured and which are truncated,

beyond the limiting models in Section 3.3.

Future Work. Here we used MLP architectures to encode the sub-

space map, but other network architectures could offer additional

properties, such as equivariant networks [Bronstein et al. 2021]

which build in rigid-invariance, or set-based networks [Qi et al.

2017; Wang et al. 2019] to model systems like particle fluids.

Future work could seek smoother subspaces, e.g. via Lipschitz

regularization of the MLP [Arjovsky et al. 2017], for faster implicit

timestep convergence (Equation 6) at large step sizes. We could also

expand our models for increased semantic control of subspaces, or

to learn models that generalize over many physical systems at once.
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Supplemental Material

A DERIVATION OF PROPOSITION 3.1
In the limit 𝜆 →∞, our metric-preserving constraint in Equation 4

is imposed precisely, forcing the subspace function to be linear and

subject to mass orthonormality constraints (see Proposition B.1 in

Appendix B):

𝑓𝜃 (𝑧) = 𝐴𝑧 + 𝑏 where 𝐴𝑇𝑀𝐴 = 𝜎2𝐼𝑑×𝑑 . (10)

where 𝐴 ∈ R𝑛×𝑑 , 𝑏 ∈ R𝑛 , and 𝜃 = (𝐴,𝑏).
If we take the limit of the scaling factor 𝜎 → 0

+
, the entries of the

matrix 𝐴 become small due to the mass weighted orthonormality

constraints in Equation 10. Hence, for sufficiently small 𝜎 , we can

expect that the outputs of our subspace function 𝑓 in Equation 10

will not stay far from the value of the inhomogeneous term 𝑏.

To understand behavior of our model in this perturbative regime,

we can approximate our original formulation in Equation 4 using

a truncated second order Taylor expansion of the potential energy

𝐸pot (·) centered at 𝑏:

min

𝐴,𝑏
E𝑧∼N

[
𝐸pot (𝑏)+𝑔(𝑏)𝑇𝐴𝑧+

1

2

𝑧𝑇𝐴𝑇𝐻 (𝑏)𝐴𝑧
]

s.t. 𝐴𝑇𝑀𝐴 = 𝜎2𝐼 .

(11)

where 𝑔(𝑥) and 𝐻 (𝑥) are the gradient and Hessian of the potential

energy 𝐸pot, respectively.

SinceN has mean zero, the linear term vanishes from the problem

above. Moreover, recognizing it as the Girard-Hutchinson trace

estimator [Girard 1987; Hutchinson 1989], we can manipulate the

quadratic term as follows:

𝑧𝑇𝐴𝑇𝐻 (𝑏)𝐴𝑧 = 𝑡𝑟 (𝑧𝑇𝐴𝑇𝐻 (𝑏)𝐴𝑧) = 𝑡𝑟 (𝐴𝑇𝐻 (𝑏)𝐴𝑧𝑧𝑇 ),

since a scalar is its own trace and by the property 𝑡𝑟 (𝐴𝐵) = 𝑡𝑟 (𝐵𝐴).
Since N has the identity matrix as its covariance, we arrive at the

following simplification of Equation 11:

min

𝐴,𝑏

[
𝐸pot (𝑏) +

1

2

𝑡𝑟

(
𝐴𝑇𝐻 (𝑏)𝐴

) ]
s.t. 𝐴𝑇𝑀𝐴 = 𝜎2𝐼 . (12)

As 𝜎 → 0, the second term of the objective in Equation 12 becomes

negligible, and the potential energy term dominates. Fixing 𝑏 and

optimizing for 𝐴 yields a generalized eigenvalue problem.

Hence, we have motivated that as 𝜎 → 0 and 𝜆 →∞, we recover
Equation 5. This formulation is exactly the classical linear method

for modal analysis, discussed e.g. in Shabana [1991].

B AFFINE PROPERTY
Proposition B.1. Suppose 𝑓 (𝑧) : Ω → R𝑛 is 𝐶1

on an open,

connected domain Ω ⊆ R𝑑 . Then, 𝑓 (𝑧) satisfies Equation 2 with

equality for all 𝑧, 𝑧′ ∈ Ω if and only if 𝑓 (𝑧) = 𝐴𝑧 + 𝑏 for some

𝐴 ∈ R𝑛×𝑑 , 𝑏 ∈ R𝑛 with 𝐴𝑇𝑀𝐴 = 𝜎2𝐼𝑑×𝑑 .

Proof. We start with the Lipschitz constant expression:

|𝑓 (𝑧𝑎) − 𝑓 (𝑧𝑏 ) |𝑀 = 𝜎 |𝑧𝑎 − 𝑧𝑏 | ∀𝑧𝑎, 𝑧𝑏 ∈ Ω,

where 𝜎 is the positive Lipschitz constant. Squaring this expression

implies

|𝑓 (𝑧𝑎) − 𝑓 (𝑧𝑏 ) |2𝑀 = 𝜎2 |𝑧𝑎 − 𝑧𝑏 |2 ∀𝑧𝑎, 𝑧𝑏 ∈ Ω.

Since 𝑓 ∈ 𝐶1 (Ω), taking the derivative w.r.t. 𝑧𝑎 implies

𝐽 (𝑧𝑎)𝑇𝑀 (𝑓 (𝑧𝑎) − 𝑓 (𝑧𝑏 )) = 𝜎2 (𝑧𝑎 − 𝑧𝑏 ) 𝐽 (𝑧) :=

(
𝜕𝑓

𝜕𝑧

)
.

Taking the derivative of this expression w.r.t. 𝑧𝑏 implies

𝐽 (𝑧𝑎)𝑇𝑀𝐽 (𝑧𝑏 ) = 𝜎2𝐼𝑑×𝑑 ∀𝑧𝑎, 𝑧𝑏 ∈ Ω. (13)

Since the expression holds in the 𝑧𝑎 = 𝑧𝑏 case, applying the expres-

sion above multiple times shows

(𝐽 (𝑧𝑎) − 𝐽 (𝑧𝑏 ))𝑇 𝑀 (𝐽 (𝑧𝑎) − 𝐽 (𝑧𝑏 )) = 0.

Since𝑀 ⪰ 0, we thus have

𝐽 (𝑧𝑎) = 𝐽 (𝑧𝑏 ) = const. ∀𝑧𝑎, 𝑧𝑏 ∈ Ω.
Since 𝑓 has a constant Jacobian in Ω, it is automatically affine:

𝑓 (𝑧) = 𝐴𝑧 + 𝑏 ∀𝑧 ∈ Ω.

Moreover, 𝐴𝑇𝑀𝐴 = 𝜎2𝐼𝑑×𝑑 thanks to Equation 13.

To prove the reverse direction, note that the relationship

|𝐴(𝑧𝑎 − 𝑧𝑏 ) |𝑀 𝑠 .𝑡 . 𝐴𝑇𝑀𝐴 = 𝜎2𝐼𝑑×𝑑

implies

𝜎 |𝑧𝑎 − 𝑧𝑏 | .
□

C ADDITIONAL DETAILS
This sections gathers additional implementation and experimental

details.

C.1 Selecting Hyperparameters
Like most learning-based approaches, our method requires a choice

of hyperparameters to weight the objective function, in our case

the penalty strength 𝜆 and metric scaling parameter 𝜎 . To be clear,

adjusting two parameters is a modest burden as neural networks

go, and our networks train very quickly (Section 4.2); we discuss

hyperparameter selection in-depth here to facilitate the application

of our method to new physical systems. Importantly, although hy-

perparameters may need new settings for new classes of systems

(e.g. cloth vs. kinematic mechanisms), they can be reused to fit many

instances of a particular system (e.g. many different cloth systems).

Table 1 gives hyperparameters for all examples in this work.

The hyperparameter 𝜎 should be chosen based on the desired

behavior of the subspace. Large values yield a subspace which spans

extreme states, while smaller values concentrate the subspace tightly

around low-energy configurations. The diversity of the subspace

also affects the ideal neural network size. Subspaces with large 𝜎

which span a larger kinematic range may also require a larger net-

work to accurately resolve the subspace, whereas smaller networks

may be sufficient for a subspace with small 𝜎 that only represents a

narrow range of motions.

Note also that 𝜎 depends on the physical units in which the con-

figuration is measured. We recommend initially choosing a large

value for 𝜎 and visualizing randomly-sampled system configura-

tions during training, recalling that Section 4.1 linearly grows the

subspace diversity as training proceeds. For example, if the subspace

spans a suitable range of configurations 1/3 of the way through
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baseline autoencoder subspace,
on collected dataset

our data-free subspace, 
without dataset

Fig. 11. A comparison of samples from the latent space of an autoencoder
trained on a manually-collected dataset (top row), and our data-free ap-
proach on the same system (bottom row). Both use the same latent dimen-
sion (𝑑 = 4).

training, then 𝜎 ← 1/3𝜎 is a reasonable choice of parameter, and

training can be repeated with this value.

The hyperparameter 𝜆 weights the approximately-isometric ob-

jective; it should be chosen ensure Equation 3 has an effect, but

also does not dominate the objective and enforce a restrictive affine

subspace (see Section B). This is easily assessed by measuring the

unitless ratio in Equation 2 during training, if is far from 1 then 𝜆

should be increased, and if it very close to 1 (e.g. within 10
−3
) then

𝜆 should be reduced.

C.2 Data-Free vs. Supervised Methods
The primary advantage of our formulation is that it fits a subspace

using only potential energy function for a system, and does not

require a training dataset. Nonetheless, it is useful to consider how

the quality of the subspaces compares with a baseline supervised

method if a dataset were available. To that end, we gather a dataset

by interactively simulating the chain from Figure 6, here with fewer

links to facilitate real-time robust full simulation. The resulting

dataset contains 40k sampled states of the system. Our method is

used to fit a subspace with a 5 × 128 MLP from a 𝑑 = 4 latent space,

which does not require the dataset. As a simple baseline model, we

train an autoencoder, where the decoder is an MLP identical to our

subspace model, and the encoder is a matching 5× 128 hidden layer

MLP. The autoencoder is fit via reconstruction loss, along with a

weak regularizer to encourage a 0-centered latent space. Figure 11

shows samples from the resulting spaces.

C.3 Performance Scaling
To measure the performance scaling of our method, we fit a series

of subspaces to an elastic deformation system where the shape from

Figure 7 is discretized at various mesh resolutions ranging from ≈ 1k

to ≈ 150k degrees of freedom. Figure 12 gives the corresponding

time cost, measured on the same setup as in Section 4.2. Our method

scales well to larger mesh sizes, especially for forward evaluation.

We naively use the exact same training scheme from Section 4.2

here and throughout this work. Likewise, all problem scales use the

same 5 × 128 MLP model, increasing only the output dimension of

# tetrahedra in mesh
103 104 105

20

30

40

50

60

forward evaluation time
(microseconds)

103

104

105

fi�ing time
(seconds)

Fig. 12. We evaluate the performance scaling of our method, fitting elastic
deformation subspaces to the same object tetrahedralized at various resolu-
tions. Each data point is a fitted subspace at a different mesh resolution; the
left red axis gives the time for a single forward evaluation of the subspace
map, while the right blue axis gives the fitting time.

the last layer to match the degrees of freedom for the system. In

practice one might adjust model sizes and training schedules for

problems with vastly ranging orders of magnitude to tune perfor-

mance. Furthermore, approaches such as adaptive cubature [An et al.

2008] are well-suited to accelerate potential energy evaluation for

high-resolution deformable models, which could greatly accelerate

the fitting procedure.

C.4 Experiment Details
Sampling for [Fulton et al. 2019]. Section 5.2 shows a preliminary

application where our data-free subspace is used to sample data

for an existing downstream supervised approach, sidestepping the

need for dataset collection. In particular, we automatically gener-

ate training data for the AutoDef method [Fulton et al. 2019], a

recent approach which offers fast deformable simulations but re-

quires significant effort to collect training data. To do so, we first

fit our subspace as usual to a single elephant mesh from the Au-

toDef experiment set, using the training parameters listed in Table 1.

Then, we randomly sample 1000 simulation states by taking ran-

dom sinusoidal motions in latent space, and applying our fitted

subspace map 𝑞 ← 𝑓𝜃 (𝑧) to get the corresponding system configu-

rations. The states are encoded as displacements from the rest pose

as expected by the AutoDef formulation. These displacements are

then used in-place of a manually collected training dataset to fit

AutoDef as described in Fulton et al. [2019]. The original AutoDef

work proposes a nontrivial pipeline of user interaction to generate

training data; we find that in this initial experiment substituting our

automatically-sampled unsupervised population yields comparable

results without the need to manually collect data.
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