
SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Sharp et al.

Supplemental Material

A DERIVATION OF PROPOSITION 3.1
In the limit _ !1, our metric-preserving constraint in Equation 4
is imposed precisely, forcing the subspace function to be linear and
subject to mass orthonormality constraints (see Proposition B.1 in
Appendix B):

5\ (I) = �I + 1 where �)"� = f2�3⇥3 . (10)

where � 2 R=⇥3 , 1 2 R= , and \ = (�,1).
If we take the limit of the scaling factor f ! 0+, the entries of the

matrix � become small due to the mass weighted orthonormality
constraints in Equation 10. Hence, for su�ciently small f , we can
expect that the outputs of our subspace function 5 in Equation 10
will not stay far from the value of the inhomogeneous term 1.

To understand behavior of our model in this perturbative regime,
we can approximate our original formulation in Equation 4 using a
truncated second order Taylor expansion of the potential energy
⇢pot (·) centered at 1:

min
�,1
EI⇠N

⇢pot (1)+6(1))�I+

1
2
I)�)� (1)�I

�
s.t. �)"� = f2� .

(11)
where 6(G) and � (G) are the gradient and Hessian of the potential
energy ⇢pot, respectively.

Since N has mean zero, the linear term vanishes from the prob-
lem above. Moreover, recognizing it as the Girard-Hutchinson trace
estimator [Girard 1987; Hutchinson 1989], we can manipulate the
quadratic term as follows:

I)�)� (1)�I = CA (I)�)� (1)�I) = CA (�)� (1)�II)),

since a scalar is its own trace and by the property CA (�⌫) = CA (⌫�).
Since N has the identity matrix as its covariance, we arrive at the
following simpli�cation of Equation 11:

min
�,1

⇢pot (1) +

1
2
CA

⇣
�)� (1)�

⌘ �
s.t. �)"� = f2� . (12)

As f ! 0, the second term of the objective in Equation 12 becomes
negligible, and the potential energy term dominates. Fixing 1 and
optimizing for � yields a generalized eigenvalue problem.

Hence, we have motivated that as f ! 0 and _ !1, we recover
Equation 5. This formulation is exactly the classical linear method
for modal analysis, discussed e.g. in Shabana [1991].

B AFFINE PROPERTY
P���������� B.1. Suppose 5 (I) : ⌦ ! R= is ⇠1 on an open,

connected domain ⌦ ✓ R3 . Then, 5 (I) satis�es Equation 2 with
equality for all I, I0 2 ⌦ if and only if 5 (I) = �I + 1 for some
� 2 R=⇥3 ,1 2 R= with �)"� = f2�3⇥3 .

P����. We start with the Lipschitz constant expression:

|5 (I0) � 5 (I1) |" = f |I0 � I1 | 8I0, I1 2 ⌦,

where f is the positive Lipschitz constant. Squaring this expression
implies

|5 (I0) � 5 (I1) |2" = f2 |I0 � I1 |2 8I0, I1 2 ⌦.

Since 5 2 ⇠1 (⌦), taking the derivative w.r.t. I0 implies

� (I0))" (5 (I0) � 5 (I1)) = f2 (I0 � I1) � (I) :=
✓
m5

mI

◆
.

Taking the derivative of this expression w.r.t. I1 implies

� (I0))"� (I1) = f2�3⇥3 8I0, I1 2 ⌦. (13)

Since the expression holds in the I0 = I1 case, applying the expres-
sion above multiple times shows

(� (I0) � � (I1))) " (� (I0) � � (I1)) = 0.

Since" ⌫ 0, we thus have

� (I0) = � (I1) = const. 8I0, I1 2 ⌦.
Since 5 has a constant Jacobian in ⌦, it is automatically a�ne:

5 (I) = �I + 1 8I 2 ⌦.
Moreover, �)"� = f2�3⇥3 thanks to Equation 13.

To prove the reverse direction, note that the relationship

|�(I0 � I1) |" B .C . �)"� = f2�3⇥3
implies

f |I0 � I1 | .
⇤

C ADDITIONAL DETAILS
This sections gathers additional implementation and experimental
details.

C.1 Selecting Hyperparameters
Like most learning-based approaches, our method requires a choice
of hyperparameters to weight the objective function, in our case
the penalty strength _ and metric scaling parameter f . To be clear,
adjusting two parameters is a modest burden as neural networks
go, and our networks train very quickly (Section 4.2); we discuss
hyperparameter selection in-depth here to facilitate the application
of our method to new physical systems. Importantly, although
hyperparameters may need new settings for new classes of systems
(e.g. cloth vs. kinematic mechanisms), they can be reused to �t many
instances of a particular system (e.g. many di�erent cloth systems).
Table 1 gives hyperparameters for all examples in this work.

The hyperparameter f should be chosen based on the desired
behavior of the subspace. Large values yield a subspace which
spans extreme states, while smaller values concentrate the subspace
tightly around low-energy con�gurations. The diversity of the
subspace also a�ects the ideal neural network size. Subspaces with
large f which span a larger kinematic range may also require a
larger network to accurately resolve the subspace, whereas smaller
networks may be su�cient for a subspace with small f that only
represents a narrow range of motions.

Note also that f depends on the physical units in which the con-
�guration is measured. We recommend initially choosing a large
value for f and visualizing randomly-sampled system con�gura-
tions during training, recalling that Section 4.1 linearly grows the
subspace diversity as training proceeds. For example, if the subspace
spans a suitable range of con�gurations 1/3 of the way through
training, then f 1/3f is a reasonable choice of parameter, and
training can be repeated with this value.

Data-Free Learning of Reduced-Order Kinematics SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

baseline autoencoder subspace,
on collected dataset

our data-free subspace,
without dataset

Figure 11: A comparison of samples from the latent space of
an autoencoder trained on a manually-collected dataset (top
row), and our data-free approach on the same system (bo�om
row). Both use the same latent dimension (3 = 4).

The hyperparameter _ weights the approximately-isometric ob-
jective; it should be chosen ensure Equation 3 has an e�ect, but
also does not dominate the objective and enforce a restrictive a�ne
subspace (see Section B). This is easily assessed by measuring the
unitless ratio in Equation 2 during training, if is far from 1 then _
should be increased, and if it very close to 1 (e.g. within 10�3) then
_ should be reduced.

C.2 Data-Free vs. Supervised Methods
The primary advantage of our formulation is that it �ts a subspace
using only potential energy function for a system, and does not
require a training dataset. Nonetheless, it is useful to consider how
the quality of the subspaces compares with a baseline supervised
method if a dataset were available. To that end, we gather a dataset
by interactively simulating the chain from Figure 6, here with fewer
links to facilitate real-time robust full simulation. The resulting
dataset contains 40k sampled states of the system. Our method is
used to �t a subspace with a 5 ⇥ 128MLP from a 3 = 4 latent space,
which does not require the dataset. As a simple baseline model, we
train an autoencoder, where the decoder is an MLP identical to our
subspace model, and the encoder is a matching 5⇥ 128 hidden layer
MLP. The autoencoder is �t via reconstruction loss, along with a
weak regularizer to encourage a 0-centered latent space. Figure 11
shows samples from the resulting spaces.

C.3 Performance Scaling
To measure the performance scaling of our method, we �t a series
of subspaces to an elastic deformation system where the shape from
Figure 7 is discretized at variousmesh resolutions ranging from⇡ 1k
to ⇡ 150k degrees of freedom. Figure 12 gives the corresponding
time cost, measured on the same setup as in Section 4.2. Our method
scales well to larger mesh sizes, especially for forward evaluation.

We naively use the exact same training scheme from Section 4.2
here and throughout this work. Likewise, all problem scales use the
same 5 ⇥ 128 MLP model, increasing only the output dimension of
the last layer to match the degrees of freedom for the system. In
practice one might adjust model sizes and training schedules for

tetrahedra in mesh
103 104 105

20

30

40

50

60

forward evaluation time
(microseconds)

103

104

105

fi!ing time
(seconds)

Figure 12: We evaluate the performance scaling of our
method, �tting elastic deformation subspaces to the same
object tetrahedralized at various resolutions. Each data point
is a �tted subspace at a di�erent mesh resolution; the left
red axis gives the time for a single forward evaluation of the
subspace map, while the right blue axis gives the �tting time.

problems with vastly ranging orders of magnitude to tune perfor-
mance. Furthermore, approaches such as adaptive cubature [An
et al. 2008] are well-suited to accelerate potential energy evalua-
tion for high-resolution deformable models, which could greatly
accelerate the �tting procedure.

C.4 Experiment Details
Sampling for [Fulton et al. 2019]. Section 5.2 shows a preliminary

application where our data-free subspace is used to sample data
for an existing downstream supervised approach, sidestepping the
need for dataset collection. In particular, we automatically generate
training data for the AutoDef method [Fulton et al. 2019], a recent
approach which o�ers fast deformable simulations but requires
signi�cant e�ort to collect training data. To do so, we �rst �t our
subspace as usual to a single elephant mesh from the AutoDef
experiment set, using the training parameters listed in Table 1.
Then, we randomly sample 1000 simulation states by taking random
sinusoidal motions in latent space, and applying our �tted subspace
map @ 5\ (I) to get the corresponding system con�gurations.
The states are encoded as displacements from the rest pose as
expected by the AutoDef formulation. These displacements are
then used in-place of a manually collected training dataset to �t
AutoDef as described in Fulton et al. [2019]. The original AutoDef
work proposes a nontrivial pipeline of user interaction to generate
training data; we �nd that in this initial experiment substituting our
automatically-sampled unsupervised population yields comparable
results without the need to manually collect data.

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Neural Subspace Maps
	3.2 Objective Function
	3.3 Reduction to Modal Analysis
	3.4 Subspace Simulation
	3.5 Conditional Subspaces

	4 Architectures and Training
	4.1 Seeded Subspace Exploration
	4.2 Implementation Details

	5 Evaluations
	5.1 Physical Systems
	5.2 Comparisons and Applications

	6 Conclusion
	7 Acknowledgements
	References
	A Derivation of Proposition 3.1
	B Affine Property
	C Additional Details
	C.1 Selecting Hyperparameters
	C.2 Data-Free vs. Supervised Methods
	C.3 Performance Scaling
	C.4 Experiment Details

